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Abstract 

Positron Emission Tomography (PET) is an imaging modality that has become 

increasingly beneficial in Radiotherapy by improving treatment planning (1). PET reveals tumor 

volumes that are not well visualized on computed tomography CT or MRI, recognizes metastatic 

disease, and assesses radiotherapy treatment (1). It also reveals areas of the tumor that are 

more radiosensitive allowing for dose painting - a non-homogenous dose treatment across the 

tumor (1). However, PET is not without limitations. The quantitative unit of PET images, the 

Standardized Uptake Value (SUV), is affected by many factors such as reconstruction 

algorithm, patient weight, and tracer uptake time (2). In fact, PET is so sensitive that a patient 

imaged twice in a single day on the same machine and same protocol will produce different 

SUV values. The objective of this research was to increase the capabilities of PET by exploring 

other quantitative PET/CT measures for Radiotherapy treatment applications.  

The technique of quantitative image feature analysis, nowadays known as radiomics, 

was applied to PET and CT images. Image features were then extracted from PET/CT images 

and how the features differed between conventional and respiratory-gated PET/CT images in 

lung cancer was analyzed. The influence of noise on image features was analyzed by applying 

uncorrelated, Gaussian noise to PET/CT images and measuring how significantly noise affected 

features. Quantitative PET/CT measures outside of image feature analysis were also 

investigated.  The correlation of esophageal metabolic tumor volumes (tumor volume 

demonstrating high metabolic uptake) and endoscopically implanted fiducial markers was 

studied. 

It was found that certain image features differed greatly between conventional and 

respiratory-gated PET/CT. The differences were mainly due to the effect of respiratory motion 

including affine motion, rotational motion and tumor deformation. Also, certain feature groups 
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were more affected by noise than others. For instance, contour-dependent shape features 

exhibited the least change with noise. Comparatively, GLSZM features exhibited the greatest 

change with added noise.  

Discordance was discovered between the inferior and superior tumor fiducial markers 

and metabolic tumor volume (MTV). This demonstrated a need for both fiducial markers and 

MTV to provide a comprehensive view of a tumor. 

These studies called attention to the differences in features caused by factors such as 

motion, acquisition parameters, and noise, etc. Investigators should be aware of these effects. 

PET/CT radiomic features are indeed highly affected by noise and motion. For accurate clinical 

use, these effects must be account by investigators and future clinical users. Further 

investigation is warranted towards the standardization of PET/CT radiomic feature acquisition 

and clinical application. 
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Chapter One: Introduction1 
1.1 Motivation 

Lung cancer has the highest estimated death for all cancers in 2015 – causing more 

deaths than colorectal, breast, and prostate cancers combined. At 28% for males and 26% for 

females, lung cancer deaths lead prostate cancer by 18% and breast cancer by 11% (3). Non-

small cell lung cancer (NSCLC), the most common type of lung cancer, accounts for 83% of all 

lung cancers and 70% of cancers present with advanced or metastatic disease at diagnosis (4). 

Typically, early stage NSCLC is treated surgically (stage 1-2)(4). Locally advanced cancers are 

typically treated with chemotherapy and concurrent radiation therapy (4). Chemotherapy is 

generally prescribed for metastatic disease and palliation.  Targeted drugs to improve response 

rates (4).  

Esophageal cancer accounts for only 4% of estimated deaths for 2015 but the five year 

survival rate for esophageal cancer patients is only 18% (3). There are approximately 17,000 

estimated new esophageal cancer cases this year alone and almost 16,000 estimated deaths 

(3). Most esophageal patients present with locally advanced or metastatic disease. To improve 

outcomes, neoadjuvant therapy (chemo-radiotherapy followed by surgery) has been 

recommended for patients with locally advanced disease prior to surgery. At present, data on 

individual sensitivity to chemotherapy and radiation therapy is lacking, thus patients are advised 

to undergo standard of care chemoradiation based on their clinical, rather than molecular, 

factors (5). Clinicians rely on radiographic indicators to assess response but, in the absence of 

progression at restaging, patients proceed to esophageal resection (surgical removal of the 

tumor); the quality of life implications and medical cost are profound if patients have a 

                                                      
1 Portions of this chapter have been previously published in Translational Oncology, 2015, 8(6): 524-534, 

and have been reproduced with permission from Elsevier. The author of this dissertation is the first author of the 
previously published work. Additional portions of this chapter have been submitted for publication.  
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pathologic complete response and yet have undergone removal of their esophagus. Conversely, 

if patients are found at the time of surgery to have had no response, their outcomes are no 

better than if they went directly to surgery upfront.  

For all cancers, diagnostic procedures (such as biopsy) are costly and invasive, and can 

be accompanied by severe side effects (6). Image feature analysis is a non-invasive, cost-

effective technique that extracts tumor identifiers that could lead to more individualized 

treatment planning by providing predictive and prognostic biomarkers for cancer patients (7). It 

is routine in lung and esophageal cancer for patients to undergo diagnostic PET/CT imaging 

prior to initial treatment. In esophageal cancers at our institution (H. Lee Moffitt Cancer Center & 

Research Institute) it is also routine for patients to receive endoscopically placed fiducial 

markers prior to radiotherapy treatment. These fiducial markers delineate the visible tumor 

burden. PET delineates metabolic tumor burden and metabolic metastasis. 

New methodologies and techniques to extract quantifiable information from current 

technologies (such as image feature analysis) may increase personalized treatment planning 

and reduce toxicity by  guiding therapy and monitoring disease progression and treatment 

response in lung and esophageal cancers.  

1.2 Imaging Modalities 

1.2.1 Positron Emission Tomography 

Positron Emission Tomography (PET) is a molecular imaging modality that provides 

information about the functional biological processes of the body. In radiation oncology, PET is 

used in: 1) diagnosis and staging; 2) target definition; and 3) treatment response assessment 

(8). In a study by the National Oncological PET Registry, FDG PET was shown to affect patient 

management in 36.5% of cases in a study of 22,975 (8).  

In cancer imaging, PET can be used to provide information such as tumor heterogeneity, 

proliferation, hypoxia, vascular perfusion and angiogenesis, and apoptosis and cellular 
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signaling, depending on the positron emitter used (8). The most common radioactive tracer in 

PET imaging for radiotherapy treatment, 18F-fluorodeoxyglucose (FDG), is used to highlight 

areas with high metabolic activity. Tumors are typically characterized by increased FDG uptake 

due to increased glycolysis and glucose transport compared to normal tissues (8). Fluorine-18 is 

a radioactive isotope that decays via positron emission (97%) and electron capture (3%). This 

isotope is substituted for a hydroxyl (OH) group on a glucose molecule at the 2’ position to form 

18F-FDG (Figure 1.1).  

 
Figure 1.1 Molecular structures of glucose and 18F-fluorodeoxyglucose. 

 

The radioactive tracer accumulates in areas of increased glycolysis and glucose 

transport (8) – “hot” areas usually include typically tumors, inflammation, brain, and bladder. 

After 18F decays via positron emission, the positrons lose their kinetic energy while travelling a 

distance of up to 2.4 mm (Maximal positron range in water. The maximal positron energy is 634 

keV (9). Once the kinetic energy is spent, the positron annihilates with an electron producing 

two 511 keV gamma rays that travel nearly opposite from each other. Ideally, the rays would 

travel at a perfect 180° angle from each other (Figure 1.2). However, these gamma rays are not 

always collinear due to scatter. The minimum possible resolution of clinical PET scanners is 

1.83 mm full width at half maximum (FWHM) due to the non-collinearity of the gamma rays, the 

distance the positron travels before annihilation (10), detector size, and other factors(11). Pre-

clinical PET scanners can have a minimum resolution of 0.67 mm FWHM. At Moffitt Cancer 



www.manaraa.com

 
4 

 

Center the minimum PET resolution is 4 mm. The PET/CT scanner at Moffitt Cancer Center is 

shown in Figure 1.3 (see page 5). 

A ring of detectors surrounding the patient detects the gamma rays and creates a line in 

space (line of response) connecting the two interactions. PET detectors are composed of 

scintillation crystals (2-3 cm depth) coupled with photomultiplier tubes (9). Scintillation crystals 

(commonly bismuth germinate - Bi4Ge3O12 (BGO) or cerium-doped leutium – Lu2SiO5 (LSO)) 

when struck by incoming gamma rays (511 keV) absorb the energy and scintillate.  

 

Figure 1.2 The PET Mechanism. The patient is injected with 18F-FDG. As positrons are emitted, 
each positron annihilates with an electron creating two 511 keV Gamma rays which are detected by the 
PET gantry. 

 

Standardized Uptake Value (SUV) is the standard PET measure in image analysis 

(equation 1.1).  However, it is clear that SUV is dependent on many technical as well as 

physiologic factors (12). It is proportionately dependent upon FDG uptake, which in turn is 

affected by dose calibration, clock (decay) synchronization, patient weight and blood sugar 

level, documentation of unused tracer remains, and other set-up specifics (12). Moreover, SUV 
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indirectly depends on the method of obtaining raw data, radionuclide uptake time, hardware 

platform, and the applied reconstruction algorithm, lesion size, motion, and user region-of-

interest ROI selection (9, 10, 12). 

 𝑆𝑈𝑉 =
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑎 𝑣𝑜𝑥𝑒𝑙 

𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦
𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑚𝑎𝑠𝑠⁄

 (1.1) 

Studies have shown SUV’s predictive ability of therapy response and survival (13, 14), 

although particularly in NSCLC discrepancy remains regarding whether maximum or minimum 

SUV is a predictor based on treatment modality (15).The prognostic ability of SUV parameters 

has also been shown, but conflict emerges when defining the best cut-off value (13). 

Nonetheless, SUV can be unreliable. A clinical study done on the test-retest reproducibility of 

SUV demonstrated greater than expected SUV variability within a single institution (12) and 

10%-25% SUV variability was detected in a multicenter consortium prior to biological effects or 

protocol influences (16). Based on these results and the SUV’s reliance on various non-

standardized factors, it is clear that there is a need for additional indicators that are more robust 

than SUV or complementary to SUV-based findings. Quantifiable and robust image features 

may be candidates for such indicators.  

 

Figure 1.3 The GE Discovery STE PET/CT Scanner at Moffitt Cancer Center. 
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To avoid errors related to radiation attenuation and Compton scattering in the patient 

tissue, the patient receives a Computed Tomography (CT) scan prior to the PET scan that acts 

as an attenuation map for PET reconstruction (17).  

1.2.2 Computed Tomography 

CT scanners, though paired with PET scanners are also stand-alone diagnostic imaging 

devices and the most commonly used imaging modality for radiation therapy treatment planning.  

The first CT scanner was invented in 1972 by Godfrey Hounsfield of EMI Laboratories, England 

and Allan Cormack Of Tufts University, Massachusetts. CT scanners were not installed for 

clinical use until 1974-1976 (9). These scanners are considered transmission devices (PET 

scanners are emission devices). To produce a CT image, x-rays are transmitted through the 

body at multiple angles (projections) by rotating an x-ray tube around the body (18). These 

images are produced on the order of milliseconds and eliminate the need for many invasive 

diagnostic surgeries (9). Because CT images work by absorbing x-rays in tissue they provide 

the electron density and are used for attenuation correction in PET images. The electron density 

is converted into CT numbers. When normalized with values of -1000 for air, 0 for water, and 

more than 1000 for bone, CT numbers are known as Hounsfield Units (equation 1.2) (19).  

 𝐻𝑈(𝑥, 𝑦, 𝑧) = 1000
(𝜇(𝑥,𝑦,𝑧)−𝜇𝑤)

𝜇𝑤
  (1.2) 

where 𝜇(𝑥, 𝑦, 𝑧) is average linear attenuation coefficient for a voxel of tissue at location 

(x,y,z) and 𝜇𝑤 is the linear attenuation coefficient for water (9). The relationship between CT 

numbers and electron density is nonlinear because of the different atomic numbers of tissues. 

This affects whether the Compton or Photoelectric effect is the dominant interaction for beam 

attenuation at x-ray energies commonly used in CT. For instance, the relationship between lung 

and soft tissue is linear, but the relationship between soft tissue and bone is nonlinear. Because 

CT images provide electron densities of tissues, they are used in the dose calculation process 

for radiation treatment planning. They provide tissue heterogeneity corrections and are used to 
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delineate the target volume (19). CT is used for tumor localization, radiation dose calculation in 

radiotherapy planning, and treatment assessment. 

1.3 Motion 

Due to the relatively long scan time of PET images (2-3 minutes per bed position with 1-

16 bed positions), motion degrades PET images. It affects both the quantification (SUV) and 

tumor volume. Because of respiratory motion, there can be an averaging effect in the thoracic 

region for PET images (20), resulting in an altered image of the tumor. Conventional or three-

dimensional (3D) imaging is the most common imaging protocol. During 3D imaging, photon 

emission loci are convoluted with anatomical motion. Four-dimensional (4D) imaging accounts 

for tumor motion. In this work, we study both 3D and respiratory-gated 4D images (Figure 1.4).  

 
Figure 1.4 Respiratory-gated imaging. Data is binned into phases according to the respiratory cycle. Ten 
bins are used in our institution. 

 

Figure 1.4 demonstrates the mechanism of respiratory gated imaging. One method to 

accomplish this uses an infrared reflective marker block placed on a patient’s abdomen (an 

internal motion surrogate). An infrared revolutions-per-minute (RPM) optical monitor tracks the 

location of the marker and associates this with the position of the abdomen at a specific point of 

the breathing cycle. Detected events (detected photons) are binned according to the position of 

the abdomen at that point on the breathing cycle. This results in one image for each bin (10 

images at our institution). These 10 images can be played in cine model thereby demonstrating 

tumor motion and deformation over the breathing cycle. 
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1.4 Image Noise 

According to Hasegawa, “Noise is often defined as the uncertainty in a signal due to 

random fluctuations in that signal.”(21) Image noise is caused by a variety of modality specific 

factors. PET and CT images possess varying levels of image noise due to the different 

mechanisms of detection and image reconstruction. One of the most considerable sources of 

image noise (common to both PET and CT), is random variations in photon counting caused by 

the statistical nature of x-rays, which is related to the number of photons detected (correlated to 

signal and image texture). This is commonly referred to as quantum noise. Electronic noise, or 

“dark noise”, is another common source of image noise. This source of noise is inherent to the 

detector and independent of the number of photons detected. It is caused by the electronic 

components that make up the detector.   

CT image noise is mainly random, statistical noise caused by the finite number of x-rays 

in projection measurements (22) and the Poisson nature of x-rays (23). In CT, common sources 

of noise include body attenuation, detector inefficiency, electronic noise, roundoff errors, 

artifacts, and structural noise (density variations in the object). On the other hand, PET image 

noise is caused by the random nature of radioactive decay (23, 24).  PET images are affected 

by partial volume effects, tumor motion, source to background ratio, patient weight, protocol 

(three-dimensional or respiratory-gated), and signal loss (e.g., induced by respiratory motion) 

(25). Scattering coincidences, random coincidences, and the random corrections degrade the 

PET signal-to-noise ratio (SNR). Other contributors of image noise in PET images include: 

detectors, electronics and recorder systems, reconstruction algorithms, convolution kernels, 

modes of attenuation correction, and radioactive decay correction (26). Electronic noise is a 

common source of noise in both PET and CT modalities. This particular source of noise is 

considered spatial frequency independent (27). It is typically considered uncorrelated noise. 
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Image noise is an unavoidable component of medical imaging. Smoothing filters can be 

used to reduce noise, but they cannot eliminate noise completely, and they may also reduce the 

signal of interest as well.  

1.5 Image Feature Analysis 

Texture is a global pattern resulting from repetition of local sub patterns (28). Features 

associated with image texture describe the relationships between the gray-scale intensity of 

pixels (or voxels in 3D) on a local or global image scale. These features have been used for 

classification and segmentation purposes, identifying regions of interest in an image and 

estimating heterogeneity (29). 

Image features are quite vast in number and can be subdivided into shape features, first, 

second, and higher order features. First order features provide information about gray-scale 

intensities and are derived from intensity distributions and histograms. Whereas second order 

texture features are derived from gray-tone spatial dependency matrices which are constructed 

from the intensity value of an image as described below the spatial relationships between voxel 

intensities (29, 30).  In this paper we refer to all of these as image features. 

In medical imaging, CT image texture analysis has been studied extensively, dating back 

to the early 1980s (31). More recent studies in CT image analysis have uncovered feature 

correspondence with lung tumor aggressiveness and tumor heterogeneity, demonstrated 

potential as a marker for survival in NSCLC and revealed relationships between features, tumor 

stage, and metabolism (32-34). The reproducibility and robustness of specific identifiers in 

NSCLC CT images have also been studied (35). 

The application of image feature analysis to PET images has been explored more 

recently. Prior studies in PET/CT image texture analysis have demonstrated its potential as a 

predictor of tumor and normal tissue response to therapy; a quantifier of tumor heterogeneity 

and radiosensitivity; and an indicator for adaptive therapy schemes (13, 36, 37). Conclusive and 
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beneficial results regarding tumor response to treatment using multi-modality imaging (38) have 

been drawn, and PET texture analysis is currently being explored for application to predictive 

models for treatment outcome, partnered with genomics and proteomics patterns (36). 

Additionally, various features have been investigated using test-retest and inter-observer 

stability in FDG-PET (39). PET image analysis has also been shown to predict response to 

radiochemotherapy in esophageal cancer (40) and to quantify tumor heterogeneity as a 

response predictor (41). Partnered with a multimodality modeling system, PET texture analysis 

could lead to more individualized treatment planning in lung radiotherapy (38).  

Moreover, certain FDG-PET-based texture features have demonstrated association with 

non-response to chemoradiotherapy for NSCLC tumors (7). These and many other studies are 

part of a more general systematic approach, namely radiomics, which is an emerging framework 

relating image features to molecular medicine where large amounts of quantitative features 

(400+) are extracted for diagnostic, prognostic, and predictive information (36, 42-44). In other 

words, PET/CT image feature analysis is an emerging and promising quantitative imaging field.  

Although radiomics show much promise, there have been several studies showing 

image features dependency on various factors in the production of images. For example, in a 

recent study, 45 of 50 texture features showed 10 - 200% variability across acquisition protocols 

and reconstruction algorithms (45). Therefore several investigators have pointed to the need for 

standardization in texture analysis (46-48).  The usefulness of radiomics depends on the 

reliability of feature values, so it is important to characterize feature behavior under many 

potential clinical conditions. Our goal in this study was to explore image feature value variability 

between respiratory-gated (RG) and conventional (3D) PET images acquired on the same 

patient during a single PET scan session as well as to explore the dependence of image 

features on image noise.  
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1.6 ROI Delineation & Tumor Segmentation 

There is a wide variety of methods for ROI delineation and tumor segmentation in PET 

imaging (42, 49). A study by Foster et al. reviews the current state-of-the-art PET segmentation 

methods (49). Common segmentation algorithms in PET imaging include: manual 

segmentation, threshold based segmentation, gradient or boundary based segmentation, 

region-based segmentation, stochastic and learning-based segmentation algorithms, and joint 

segmentation methods (49). There is a wide range of opinions about what method is the golden 

standard, especially in application to image feature analysis (42) and further research in image 

segmentation and agreed-upon metrics is merited (49). A report by the American Association of 

Physicists in Medicine (AAPM) TG211 is being composed which analyzes the pros and cons of 

the different methods of auto-segmentation in PET. 

In this work, we used the fixed threshold method for PET. This method delineates ROIs by 

a threshold intensity value or percentage of an intensity value. In radiation oncology, commonly 

used PET threshold values of 40-43% of the SUVmax and 2.5 SUV (49). Although standard 

thresholding segmentation methods are the easiest to apply, they are not always the most 

reliable because of the factors that affect SUV. Factors that will degrade tumor delineation are 

patient motion, inter-observer variability, partial volume effect, and noise. These factors affect 

any segmentation method because they affect the PET image. However, these factors can 

highly affect structures delineated via threshold. Regardless, we deemed the thresholding 

method suitable for our study. 

1.7 Objectives 

The objective of this study was to increase the capabilities and uses of PET/CT in 

radiotherapy in lung and esophageal cancers using quantitative techniques such as image 

feature analysis. The aims of this work were to: 1) evaluate the effect that motion and 

respiratory-gated imaging has on image features; 2) evaluate the effect that uncorrelated noise 
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has on image features; 3) evaluate the discrepancies between metabolic tumor volume (MTV) 

and fiducials for esophageal tumors. 

1.8 Dissertation Structure 

Chapter 2 is a review of image feature analysis in lung and esophageal cancers. 

Chapter 3 introduces the materials and methods used throughout the study. The method of 

segmentation and extraction of image features are described in detail. Chapter 4 explains the 

procedure, results and conclusions of the variability of image features computed from 

conventional and respiratory-gated PET/CT images of lung cancer. Chapter 5 details 

uncorrelated noise effects on image features extracted from conventional and respiratory-gated 

PET/CT images of lung cancer. Chapter 6 details the correlation between metabolic tumor 

volume and fiducials for locally advanced esophageal cancer. Chapter 7 is a summary of the 

work detailed in the dissertation and discussion of possible future work. 
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Chapter Two: Background2 

2.1 Image Feature Analysis in PET/CT 

Clinical imaging by Positron Emission Tomography (PET) and Computed Tomography 

(CT) is evolving into a quantitative discipline where a large number of metrics are computed in 

the intensity and gray-level matrix domains; this discipline has been termed Radiomics (42, 50). 

The purpose of this dissertation is to review previous studies in image feature analysis and 

radiomics applied to Radiotherapy and explore the clinical applications and impact that image 

feature analysis can have on patient treatment individualization by elucidating the optimal 

treatment method prior to treatment via predictive or prognostic indicators. Radiomics of CT & 

PET images have shown promise as a diagnostic, prognostic, and predictive tool in cancer 

treatment (42, 51-54). It is also being combined with other “omics” (e.g., genomics, 

transcriptomics, proteomics, metabolomics) into decision support systems (55).  

2.2 Introduction of the Problem 

Lung cancer is the leading cause of death in cancer patients with estimated death rates 

of 27% for males and 26% for females in 2016 (56). This rate is higher than both prostate and 

breast cancer rates. According to the American Cancer Society, lung and esophageal cancers 

have a 5-year survival rate of 17% and 18%, respectively. These are the lowest reported cancer 

survival rates (liver and lung are tied for the lowest rate of 17%) (56). It is routine practice for 

lung and esophageal cancer patients to receive diagnostic PET/CT images prior to treatment 

(57). Image feature analysis offers a non-invasive, cost effective method to extract additional 

quantitative data from medical images. 

                                                      
2 Portions of this chapter have been submitted for publication. 
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At 18%, esophageal cancer has one of the lowest five-year survival rates of all cancers 

and is comparable to that of lung cancer. Recent randomized data supports neoadjuvant 

chemoradiation followed by resection for locally advanced disease (58). There are, however, 

subsets of patients who are cured with definitive chemoradiation without surgery who thus 

successfully undergo organ preservation (59). Clinical validation of sensitivity analyses to 

chemotherapy and radiation therapy is ongoing to try to personalize an individual tumor’s 

response (5). Standard of care treatment at the present time does not reliably define how to 

predict a patient’s likelihood of a complete response to chemoradiation, thus the 

recommendation to proceed to surgical resection since even a negative PET/CT (Positron 

Emission Tomography/Computerized Tomography) at 6 weeks post treatment can still harbor 

residual microscopic disease (60). Accordingly, it has been hypothesized (54) that there are 

quantitative imaging methods to determine what treatment regimen will be most suitable for a 

particular tumor. The future benefit of such a strategy would be to avoid esophagectomy in 

those patients validated to have a clinical complete pathologic response and avoid futile 

chemoradiation neoadjuvantly in those patients who do not have sensitive tumors. 

A study done by Burton et al. (1998) showed that 44% of all malignant tumors diagnosed 

at autopsy were undiagnosed or misdiagnosed. Of these, the top mis- and undiagnosed tumors 

were from the respiratory tract (33%) and the gastrointestinal tract (23%) (61). The overall aim 

of image feature analysis is to increase the quantitative information about a tumor towards more 

personalized treatment. Many investigators try to accomplish this aim by correlating features 

with outcomes to be used as predictive or prognostic indicators for more individualized patient 

treatment. If predictive or prognostic indicators about a patient’s tumor are available prior to 

treatment, then the optimal treatment regimen can be selected prior to treatment. This saves a 

patient time, money, gives a better chance of survival, and may spare the patient unnecessary 

treatment. For instance, in locally advanced esophageal cancer it is standard-of-care for 
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patients to undergo neoadjuvant chemoradiation therapy followed by surgery. If the oncologist 

knows prior to treatment that a tumor will not respond to chemoradiation they can recommend 

surgery upfront. This saves a patient the pain of undergoing chemoradiation and allowing the 

tumor to grow stronger over that period of time while giving the patient their best chance of 

survival. Investigators are a long way away from this goal, but a lot of research has been done 

in this area in recent years (62). 

 
Figure 2.1. PET coronal image slice, tumor ROI with contour and its grey-level co-occurrence matrix 

(GLCM). This is a 2D example for illustration purposes. The GLCM matrix was calculated with Wolfram 

Mathematica 9.0 for this illustration (Wolfram Research, Inc., Mathematica, Version 9.0, Champaign, IL 

(2012)). 

 

The technique of image feature analysis extracts indicators (features) that provide 

information about the heterogeneity, shape, and intensity of a segmented tumor region that is 

not traditionally extracted from medical images. These features may also be extracted from 

matrices generated from PET/CT images and are known as texture features. Images are 

composed of pixels and texture features analyze pixel pairs and pixel areas such as in figure 2.1 

(29, 63-65). An example of a matrix is the grey-level co-occurrence matrix (GLCM) where the 

number of times 2 pixels with intensity i and j occur adjacent to each other in a particular 

direction (29). Other matrices and techniques include: Laws features, Minkowski functionals, 
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wavelets, Lapacian transforms and fractal dimensions. These techniques are usually used in the 

discipline of radiomics (66). 

2.3 Texture Analysis, Image Feature Analysis, or Radiomics? 

Although commonly used interchangeably, there is a distinction between texture 

analysis, image feature analysis and radiomics. Texture analysis refers to the extraction of 

features from an image that provides information on the relationship and patterns between two 

or more pixels. In application to tumor images, for example, texture analysis reveals information 

about tumor heterogeneity. Texture as defined by Zucker et. al (1980), is a global pattern 

resulting from repetition of local subpatterns (28). These subpatterns are directly related to the 

intensity values stored in the pixels of the image. Texture analysis was originally created in 1973 

by Haralick et al. with the invention of the Grey-Level Co-occurrence Matrix (GLCM) (29). Image 

texture describes relationships between pixels (or voxels) on a local or global image scale and 

has been used for classification and segmentation purposes (29, 63), identifying regions of 

interest in an image and quantifying heterogeneity. Every image is composed of a different 

orientation of pixel data and therefore has a different "texture". 

Image feature analysis is a broad concept that includes texture analysis, but also 

includes shape descriptors and features derived from intensity histograms. Radiomics is an 

organized discipline of image feature analysis that extracts large numbers statistically (p<0.05) 

of mineable quantitative image features from CT, PET, and magnetic resonance imaging (MRI) 

images for decision support. The goal of radiomics is to “convert images into mineable data” – 

thus shifting clinical image analysis from a qualitative to a quantitative field (36, 50). Gillies et al. 

provided a very detailed description of the current state of radiomics, the challenges and future 

of radiomics. Throughout the remainder of this review, features will be spoken of collectively as 

image features unless they were specifically named texture features (textural features) or 

radiomic features in their respective studies.  



www.manaraa.com

 
17 

 

2.4 Clinical Application, Uses, and Relevance of Image Feature Analysis  

Image feature analysis of positron emission tomography (PET) and computed 

tomography (CT) images has the potential to provide identifiers that may improve treatment 

individualization in oncology. It has been studied for application in many aspects of oncology 

including chemotherapy, pathology, & radiotherapy. Many studies have demonstrated that 

image feature analysis, also known as texture analysis, has predictive or prognostic indicators 

(67). This work aims to review various studies which have tested the predictability, repeatability, 

and limitations of image feature analysis for lung and esophageal cancer in Radiotherapy 

applications. Radiomics as predictive or prognostic biomarkers (66) will also be reviewed.  

2.5 Image Feature Analysis in PET 

Currently, PET scanners in combination with CT is used for diagnosing patients, 

determining cancer stage, and identifying areas of high metabolic activity including the primary 

tumor location (68). The Standardized Uptake Value (SUV), which is used for simple semi-

quantitative analysis, depends on a variety of factors, such as the selected ROI, size of the 

tumor, sugar level of the patient, etc (69).  Radiation oncologists rely heavily on the SUV value 

when analyzing PET for staging. However, studies have shown that SUV values differ across 

reconstruction algorithms (45) and from day to day (2). 

PET in radiotherapy has improved NSCLC diagnosis of “definite lesions” by 41% (70) 

and is also used for dose-painting and tissue sparing. Investigators have applied image feature 

analysis in PET to detect heterogeneity indicators in relationship with predictive or prognostic 

biomarkers in a number of cancers including non-small cell lung cancer (NSCLC), esophagus, 

and cervix. This review focuses mainly on NSCLC and esophageal cancer.  

Before the first study on image feature analysis in PET imaging by El Naqa et al. in 2009 

(14), clinical image feature analysis was generally applied to CT, MRI and ultrasound images 

(71). Since 2009 there has been a burst of interest and investigation in image feature analysis 
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applied to PET images. Many studies have identified features that can be used as predictive or 

prognostic identifiers for treatment assessment. 

2.5.1 Using Heterogeneity as an Indicator in 18F-FDG PET 

Many investigators are interested in the application of image feature analysis to 18F-

FDG PET imaging because it provides a blueprint for the heterogeneity of the metabolic activity 

of a tumor. Because of the intrinsic nature of PET, texture pattern within PET tumor images 

represents metabolic heterogeneity and biological activity. Since tumors possess characteristic 

phenotypes and genotypes, it is believed that tumor heterogeneity provides information about 

the radioresistance and aggressiveness of a tumor. Ganeshan et al. (72, 73) demonstrated that 

tumor heterogeneity can identify adverse biological features in CT images. However, Cook et al. 

(7) resolved that in 18F-FDG PET, these biological correlations are still, to a large extent, 

unknown.  

El Naqa et al.’s study (14), the first published study on the application of image feature 

analysis to PET images, was performed on cervix and head and neck cancers. Although this 

study was preliminary, it was the first to suggest that image feature analysis of PET images 

could provide better tools and power for use in clinical prognosis. This study also introduced a 

new group of features, the intensity-volume histogram metrics. The purpose of the study was to 

extract prognostic factors that would be more reliable and informative than SUV statistics 

towards the prediction of treatment outcomes. A later study from the same group, by Vaidya et 

al., was performed with the purpose of predicting local failure in radiotherapy for NSCLC 

patients (38). A total of 32 variables for 27 patients were studied. They found that multimodality 

feature modeling provided better performance than single modality features. This finding 

supports the current shift towards radiomics studies. These studies will be discussed later in this 

report. 
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In a study of pre- and post-treatment 18F-FDG PET on patients diagnosed with NSCLC, 

small cell lung cancer (SCLC), diffuse large B-cell lymphoma, metastatic papillary renal cell 

carcinoma, cerebellar hemongioblastoma, neurofibroma, lymphomatoid granulomatosis, lung 

neoplasm, and other cancer types,  textural features in combination with SUV measurements 

improved the prediction accuracy of morphological changes significantly (74). In this study, 

investigators created a framework where tumor regions on PET were automatically segmented. 

They found that entropy, max probability, contrast, and SRE were the most valuable features 

(74).  

A study by Cook et al. investigated the predictive and prognostic abilities of 4 features 

from the neighborhood gray-tone difference matrices (NGTDM) for NSCLC patients undergoing 

concomitant radiochemotherapy (7). Their features were able to differentiate responders from 

nonresponders (defined by CT Response Evaluation Criteria in Solid Tumors (RECIST) (75)). 

The textural features performed better than the standard quantitative indicators: metabolic tumor 

volume (MTV), total lesion glycolysis (TLG), Standardized Uptake Value (SUV) max, SUV mean 

or peak SUV. Overall, Cook et al. found that the abnormal texture in 18F-FDG PET for NSCLC 

defined by the features busyness, contrast, coarseness, and complexity from the NGTDM was 

associated with nonresponse to chemoradiotherapy by RECIST guidelines and associated with 

poorer prognosis (7). 

Another study on 18F-FDG PET image feature analysis assessed the relationship 

between textural features and SUVmax with histological tumor grade, tumor location and stage 

(AJCC). Significant correlations were found between energy and entropy (features derived from 

the grey-level co-occurrence matrix, GLCM) and SUV and tumor stage (76). 

2.5.2 Tumor Delineation and Volumes 

There have also been discrepancies about which tumor delineation method to use for 

feature analysis. Currently used segmentation methods include threshold methods, model-
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based methods, and methods that account for background are currently in use. Hatt et al. 

studied the robustness of image features across tumor delineation methods and the partial 

volume affect (67). They also assessed the predictive value of features with different delineation 

methods. They found that the features intensity variability and size zone variability, regional 

descriptors from the grey-level size-zone matrix (GLSZM) were the most sensitive to tumor 

delineation method and partial volume effect (PVE). Those features that were the most robust 

were entropy and homogeneity as well as other local parameters. Zone percentage (ZP) and 

high intensity emphasis (HIE) were also robust. There was only a small change in their absolute 

or predictive values when classifying patient response to therapy (67). 

Another study by Hatt et al. on multi-cancer sites recommended that the minimum 

volumes for use in image feature analysis were 10 cc (77).  They also investigated 

complementary prognostic values between volume and heterogeneity as well as investigating 

the influence of quantization preprocessing and the method of texture feature calculation on 

features. They found that most features that have been shown to quantify tumor heterogeneity 

are correlated with tumor volume and that prognostic values increased as tumor volumes 

increased. 

Brooks and Grigsby showed that tumor volume size affects metabolic heterogeneity 

studies. They proposed that studies of intratumoral uptake heterogeneity metrics should be 

applied to tumors above 45 cc to provide unbiased results (78). 

Orlhac et al. investigated the relationship between texture indices, SUV, metabolic 

volume, and TLG. They found that the minimum resampling of 32 gray levels should be used for 

texture analysis and that many texture features are highly correlated with MTV (79). 
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2.5.3 Image Feature Studies Assessing Features as Predictive or Prognostic 

Indicators 

Many studies have demonstrated the potential for image features as predictive or 

prognostic indicators. Chicklore et al. produced an excellent review detailing the studies through 

2013 that had been published towards image feature analysis as an indicator for tumor 

heterogeneity (13). Tan et al. assessed FDG PET features for predicting pathologic response to 

neoadjuvant chemoradiotherapy in esophageal cancer (80). They found that these features 

were useful predictors of pathological response to chemoradiotherapy. These features were 

found to have the same or higher AUC values than SUVmax and SUVpeak (traditional measures). 

Those features were inertia, correlation, and cluster prominence, SUVmean decline, and 

skewness pre-CRT (80). 

Tixier et al. (40) also studied whether textural features predicted response to 

chemoradiotherapy. However, in this case, response was measured using pre and post 

treatment CT scans according to the Response Evaluation Criteria in Solid Tumors (RECIST) 

rather than the American Joint Committee on Cancer Cancer Staging Manual (6th edition) 

pathology as in (80). In this study, features were extracted on a global scale as well as local and 

regional levels. The results from this study demonstrated that features were able to differentiate 

non-responders from responders. Local homogeneity and entropy were the best identifiers from 

the co-occurrence matrix. The best features in predicting response to treatment were intensity 

variability and size zone variability, regional descriptors. Not only were these features able to 

differentiate non-responders from responders, they were able to distinguish partial responders 

from complete responders. 

2.5.4 Test-Retest 

Although studies have demonstrated that certain features can be used as indicators, it is 

important to know if these features are reproducible. There have been a number of test-retest 
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studies on image features derived from PET images. These studies are very important to 

distinguish those features that can be used clinically with confidence. Leijeneaar et al. tested the 

stability of PET radiomics features in NSCLC. The majority of features, 71%, demonstrated high 

test-retest stability. Ninety-one percent of features had a high inter-observer stability, as 

indicated by the intra-class correlation coefficient. Typically, features with high test-retest 

stability also demonstrated high inter-observer stability (39). 

A following article by Tixier et al. tested the reproducibility of heterogeneity 

characterization via image feature analysis in FDG PET images (41). They tested features 

extracted from double baseline FDG PET scans and found that some features had better 

reproducibility than traditional factors such as mean and maximum SUV. Interestingly, regional 

parameters that characterized larger homogenous areas of high intensity may predict response 

to therapy because of high uptake is usually associated with aggressiveness. They suggest that 

investigators carefully select their features to provide both a complete and reproducible 

characterization of the spatial heterogeneity of tumor FDG uptake (41).  

Willaime et al. (37) journeyed away from the traditional PET radiotracer to 18F-

fluorothymidine PET (FLT PET), a cell proliferation radiotracer. They assessed if features 

extracted from breast cancer PET images could be used to characterize intra-tumor 

heterogeneity of in vivo cell proliferation. They also assessed if these features could be used to 

predict response to chemotherapy in breast cancer patients. Eight texture features exhibited 

variability below 30% and seven of those had reasonably small inter-patient variability. Among 

these eight features were entropy (first order), entropy (GLCM), contrast, dissimilarity, 

homogeneity. 

2.5.5 Limitations and New Approaches 

Despite the optimistic results of many previously described studies, there are many 

sobering studies which investigate the limitations of image feature analysis in PET. Galavis et 
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al. demonstrated that image features are affected by modes of acquisition and reconstruction 

parameters (45). After testing 50 features, 45 of 50 demonstrated variability ranging from 10% - 

200 % between acquisition modes and reconstruction parameters. In a more recent study, Yan 

et al. found that image features have different sensitivities to reconstruction settings (81). They 

also found that grid size, iteration number and FWHM had an impact on image features with grid 

size have the largest impact. An interesting investigation by Chalkidou et al. demonstrated that 

PET/CT image feature studies contain a probability of type-I error of 34-99% with an average of 

76%. This means that on average, 76% of studies found a false predictive correlation between 

features and outcome (82). This is supported by a perspective from Buvat et al. which brings up 

other areas that hinder PET image feature analysis such as spatial resolution and noise (71). 

Apparently these factors bring their own textural patterns and signal correlation to PET images 

(71). Another important factor is anatomical motion during imaging. Oliver et al. investigated the 

variability of image features between respiratory-gated and conventional protocols (83) finding 

that  26.2 % of PET features had percent differences less than 5% between protocols. Leijenaar 

et al. demonstrated that image features are affected by SUV discretization (47) and Nyflot et al. 

stressed that additional standardization is needed for PET textural features (48). These and 

other investigators call for the standardization of image features. 

Cheng et al. alerted investigators that although certain PET features have demonstrated 

prognostic significance for certain solid tumors (NSCLC, esophageal squamous cell, cervical 

cancer, and oropharyngeal squamous cell), standardization is needed to take PET feature 

analysis from the research lab to oncological practice (46). Cheng also resolved that well-

designed multicenter studies in which PET texture features from different institutions could help 

with standardization by removing the inconsistencies of PET features (46). Many of which are 

caused by differing reconstruction parameters and acquisition modes (45, 46). They also 

resolved that one PET textural feature alone will not have accurate information regarding clinical 
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outcomes. Instead, groups of multimodal biomarkers should be used since they will have better 

prognostic accuracy. This can be achieved through Radiomics (46).  

2.6 Image Feature Analysis in CT 

CT is the most commonly used diagnostic imaging modality in radiotherapy. It is used for 

tumor localization and its unique imaging method provides the electronic density data essential 

for treatment planning. CT data are also used for PET attenuation in PET/CT dual modalities. 

Image feature analysis in CT images dates back to the 1980s. In recent years, studies have 

assessed features derived from CT images towards revealing prognostic phenotypes, 

relationships between features, tumor metabolism and stage, and correlations between tumor 

hypoxia, angiogenesis, and aggressiveness (32, 34, 73, 84). 

Aerts et al. used radiomic features derived from CT images to reveal prognostic 

phenotypes in lung cancer and head and neck cancer. The study consisted of 7 independent 

datasets - a total of 1019 patients. It was discovered that CT image features have strong 

prognostic information associated with gene-expression patterns. They also showed that 

radiomic features were complimentary to TNM staging for outcome prediction (84). 

A study by Ganeshan et al. demonstrated evidence for a relationship between NSCLC 

texture features derived from CT images and tumor metabolism and stage (32). A following 

study from the same group tested if tumor heterogeneity, described by texture features from CT 

images in NSCLC, were survival markers (33). They found these features to have the potential 

to provide independent predictions of survival in NSCLC. Ganeshan et al. also found that 

heterogeneity in oesophageal cancers defined by texture analysis of CT images were 

associated with increased tumor metabolism and advanced tumor stage (both defined via 18F-

FDG PET) (72). In a later study, Ganeshan et al. also found that tumor heterogeneity described 

using CT image texture in NSCLC had significant correlations with tumor hypoxia markers and 



www.manaraa.com

 
25 

 

angiogenesis (73). These studies indicate that features may provide prognostic and functional 

information towards personalized treatment in esophageal cancer and NSCLC. 

Hunter et al. tested the reproducibility of image features across 3 CT machines from 2 

institutions in NSCLC (35). They found that features derived from average 4D CT machines 

were the best candidates for correlation in the clinic and had the best reproducibility compared 

to end-exhale 4D CT and breath-hold 3D CT (35). This study was modeled after a prior study by 

Kumar et al. (85) which demonstrated that the variance for SUV in FDG-PET/CT inside a single 

institution was much greater than expected. Relative differences were ±49% for SUVmax and 

±44% for SUVmean. 

A study by Ravanelli et al. was the first to test whether texture analysis can be used as 

independent predictors of chemotherapy response in NSCLC (86). They found that there was 

potential for such features as predictive indicators however, a larger study size was needed to 

validate the preliminary results. They also created an index, GL*U, composed of two features, 

mean grey level and uniformity (32, 33, 72, 86). Texture analysis in CT has also been tested for 

its application to radiation-induced lung damage. Ruysscher et al. demonstrated that changes in 

Hounsfield Units (HU), the quantitative measure of CT images could identify the entire range of 

radiosensitivity on a quantitative scale (87).  

The reproducibility of CT image features is a very relevant topic and one that has been 

studied by Balagurunathan et al. This group tested the reproducibility of CT image features in 

NSCLC (88). Patients received 2 CT scans within a 15 minute period. According to the 

concordance correlation coefficient (CCC), certain features were identified with reproducibility 

and the ability to predict a prognostic score on the samples (88). Grove et al. (89) developed 2 

new robust quantitative imaging features, convexity and entropy ratio. These features were able 

to score tumors and identify imaging phenotypes exhibiting survival differences in lung cancer 

demonstrating the existing connection between patient survival and features. In future, these 
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features may be used diagnostically for lung adenocarcinomas. Image feature analysis of CT 

images is not a new topic but the discipline of radiomics is reinvigorating research in this area. 

2.7 The Future of Image Feature Analysis  

In recent years, networks have been established that encourage the standardization of 

quantitative imaging and the sharing of results between researchers, clinical and industry 

professionals (90). Two major initiatives, the Quantitative Imaging Network (QIN) and the 

Quantitative Imaging Biomarkers Alliance™ (QIBA™), were developed to promote research in 

quantitative imaging for clinical trials.  

The Quantitative Imaging Network is a framework established to further the development 

of quantitative imaging methods and possible biomarkers to measure tumor response in clinical 

trials (91). Currently there is an image analysis working group that “provides guidance, 

coordination, consensus building, and awareness regarding the development of algorithms and 

methods for quantitative analysis.” This working group is composed of dynamic contrast-

enhanced (DCE)-MRI and PET/CT subgroups.  

The Quantitative Biomarkers Alliance (QIBA), sponsored by the Radiological Society of 

North America (RSNA) and the National Institute for Biomedical Imaging and Bioengineering 

was developed in 2007 by RSNA to promote quantitative image assessment in radiology 

through the convergence of researchers, healthcare professionals, and industry. Since that time 

they have established a protocol for FDG-PET imaging (90) which provides details from the 

beginning: subject handling and image data acquisition, to the end: image interpretation and 

reporting, and quality control.  

Amongst investigators in image feature analysis, radiomics is considered “the next 

frontier in clinical decision making” (66). Gillies et al. stressed the importance of benchmarks for 

radiomics studies: extraction, analysis, and presentation of features (66). Radiomics is 

becoming the new face of image feature analysis in medical imaging. The annual Radiomics 



www.manaraa.com

 
27 

 

Workshop organized by Dr. Gillies from the Moffitt Cancer Center, which began in 2009, has 

evolved into a meeting of over 100 investigators from 5 countries and 27 institutions which 

encourages the sharing of current radiomic findings and collaboration in the field. 

Image feature analysis applied to PET/CT images in lung and esophageal cancer have 

proven to have prognostic and predictive indicators that may be used for treatment assessment. 

However, studies testing the limitations of these features are underway which will lead to better 

standardization and reliability of quantitative image features for decision support.   
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Chapter Three: Materials & Methods3 

3.1 ROI Delineation and Tumor Segmentation 

Throughout this work, image sets were imported and viewed with Mirada Medical 

Software (Mirada RTx, Mirada Medical, Oxford, UK), a proprietary software providing tools for 

tumor analysis and visualization of Digital Imaging and Communications in Medicine (DICOM) 

image data for 3D and RG PET/CT images. The image viewing software provided tumor 

visualization, easy access to X, Y, or Z slices of 3D PET data, and region-of-interest (ROI) 

delineation.  

Segmentation method varied between studies. In Chapter 3, lung tumors are segmented 

based on a 40% maximum threshold setting determined by Mirada RTx. PET image tumors 

were contoured at 40% maximum intensity inside a defined volume of interest. Tumors on CT 

were contoured with CT region segmentation. This method of segmentation was deemed 

acceptable for application in this chapter because we were comparing contours from the same 

image with differing noise levels.  

In Chapters 2 & 4, a background-adapted threshold method of segmentation defined by 

Dholakia et al., which accounted for background uptake, was applied to eliminate subjective 

errors and inter-observer variability (92). This method involved placing a 3-cm spherical contour 

inside the liver and extracting the mean SUV and standard deviation to calculate a threshold 

value for the lung tumor (equation 3.1): 

 𝑀𝑇𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑆𝑈𝑉𝑚𝑒𝑎𝑛 + 2 ∗ 𝑆𝑈𝑉𝑆𝐷 (3.1) 

                                                      
3 Portions of this chapter have been previously published in Translational Oncology, 2015, 8(6): 

524-534, and have been reproduced with permission from Elsevier. The author of this dissertation is the 
first author of the previously published work. All figures are used with copyright permission. (See 
Appendix B). 
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where SUVmean is the mean SUV value of the 3-cm sphere and SUVSD is the standard 

deviation of the  3-cm sphere's SUV values. This segmentation method will be referred to as the 

Dholakia method. We are aware of the many segmentation methods in the literature and that no 

one method is generally regarded optimal for general medical applications (49). With lung 

tumors, major structures and surrounding tissues were minimal. Consequently there was little 

uptake outside the tumor volume. If, however, a tumor was close to the diaphragm or pleura, 

nearby metabolic structures were also segmented. Due to the adaptive segmentation method 6 

PET lung lesions were rendered too tiny and were not evaluated. In esophageal tumors, the 

Dholakia method gave rise to areas of the heart and/or stomach that were included in the 

contour. In these cases, a physician-resident reviewed and manually edited these MTVs.  

In CT images, tumors were contoured with CT threshold, a proprietary algorithm using 

Mirada RTx (see Figure 3.1). The three-dimensional contours were drawn separately on the 3D 

CT image and on one phase (phase 1 or phase 10) of the corresponding RG CT image for each 

patient. In our clinic, CT contours are used for treatment planning purposes whereas PET 

ensures the entire metabolic tumor volume is included in the gross tumor volume (GTV). CT 

contours were only collected for lung tumors.  

Images were exported from Mirada to a local drive for analysis in DICOM file format. 

Structures (contours) were exported from Mirada in DICOM RT file format, an extension of the 

DICOM file format. An open source program, RegGui v0.42., in MATLAB (MATLAB and 

Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States) 

was used to produce a MetaImage  file (.mhd and .raw) using CT images.  A MetaImage is a 

raw file format, a text-based tagged file format for medical images that stores 3D data in one 

file. The .mhd file includes the header information and .raw file includes the data. 
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Figure 3.1: CT segmentation of one patient viewed in 2D (the ROI extends in 3D). This CT image is 
viewed in the window preset for the lung in Mirada DBx (RTx, Mirada Medical, Oxford, UK). 

 

3.2 Feature Extraction 

An internally-developed application imported the ROI data files. We imported .mhd file 

format for CT and DICOM file format for PET images, and extracted image intensity statistics, 

shape descriptors, co-occurrence matrices, run length matrices, and other second order 

features from each ROI for a total of 81 image features (Tables 3.1-3.6). Some groups have 

shown the instability of certain features from 3D images (40, 41, 45). Others have used large 

numbers of features (>200, (36)). Nevertheless, we deemed 81 features sufficient to assess the 

variability between 3D and RG feature values. A total list of image features is listed in Table 3.1.  

In PET, the image intensity represented the number of registered counts per voxel, 

whereas for CT, intensity represented the Hounsfield Units in each voxel. All intensity levels 

were used and normalization was applied only to the co-occurrence and run length matrices (in 

the form of binning; 128 bins). Opposite to standard practice, intensity values for PET images 

were not converted to SUV. Instead, stored image intensity values were analyzed directly. 
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Table 3.1 Extracted Image Features including Shape Features, Intensity Features, GLCM features, RLM features, and GLSZM features. 

Shape (11) Intensity (22) GLCM
a
 (26) RLM

b
 (11) GLSZM

c
 (11) 

Volume (voxels) Minimum Intensity Energy Short Run Emphasis (SRE) 
Short Area Emphasis 

(SAE) 

Volume (cc) Maximum Intensity Contrast Long Run Emphasis (LRE) Large Area Emphasis(LAE) 

Surface Area Mean Intensity Local Homogeneity 
Low Gray-Level Run Emphasis 

(LGRE) 
Low-Intensity Emphasis 

(LIE) 

Surface Area/Volume Peak Intensity Entropy 
High Gray-Level Run Emphasis 

(HGRE) 
High-Intensity Emphasis 

(HIE) 

Sphericity Standard Deviation Correlation 
Short Run Low Gray-Level 

Emphasis (SRLGE) 
Low-Intensity Small-Area 

Emphasis (LISAE) 

Compactness Skewness Autocorrelation 
Short Run High Gray-Level 

Emphasis (SRHGE) 
High-Intensity Small-Area 

Emphasis (HISAE) 

Spherical Disproportion Coefficient of Variation Correlation 
Long Run Low Gray-Level Emphasis 

(LRLGE) 
Low-Intensity Low-Area 

Emphasis (LILAE) 

Long Kurtosis Dissimilarity 
Long Run High Gray-Level 

Emphasis (LRHGE) 
High-Intensity Low-Area 

Emphasis(HILAE) 

Short TGV Cluster Tendency Gray-Level Non-uniformity (GLNU) Intensity Variability (IV) 

Eccentricity RMS Cluster Shade Run Length Non-uniformity (RLNU) Size-Zone Variability (SZV) 

Convexity I30 Cluster Prominence Run Percentage (RPC) Zone Percentage (ZP) 

 
I10-I90 Mean 

 
 

 
V40 Variance 

 
 

 
V70 Max Probability 

 
 

 
V80 Inverse Variance  

 
 

 
V10-V90 Inverse Variance P 

 
 

 
Energy Inverse Difference Moment 

 
 

 
Entropy Inverse Difference 

 
 

 
Contrast Sum Average 

 
 

 Local Homogeneity Sum Variance   

 Histogram Entropy Sum Entropy   

 Uniformity Difference Average   

  Difference Variance   

  Difference Entropy   

  Information Measure of Correlation 1   

  
Information Measure of 
Correlation 2 

  

a
Gray-Level Co-occurrence Matrix (GLCM). 

b
Run Length Matrix (RLM). 

c
Gray-Level Size-Zone Matrix (GLSZM). 
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3.3 Features 

Image features range from shape descriptors to texture descriptors. As previously 

described, first order features provide information about gray-scale intensities. These features 

are derived from intensity distributions and histograms. Second order texture features are 

derived from gray-tone spatial dependency matrices which are constructed from the intensity 

value of an image. They describe the spatial relationships between voxel intensities (29, 30). 

Second order features provide information about the heterogeneity of a ROI. 

Table 3.2 Shape Features 

Feature Description Mathematical Description 

Convexity 
A measure of the spiculation of 

the ROI (ratio of true ROI volume 
to convex ROI volume) 

-- 

Volume 
A measure of the size of the 
tumor in three dimensions. 

-- 

Surface Area 
A measure of the area of the 
surface of the tumor volume. 

-- 

Surface Area/Volume 
A measure of the surface area 

divided by the volume. 
-- 

Long Axis 
A measure of the longest tumor 

diameter. 
-- 

Short Axis 
A measure of the shortest tumor 

diameter. 
-- 

Sphericity 
A measure of the spherical 

shape (roundness) of the ROI 
( √𝜋

3
∗ √6𝑉23

) 𝐴⁄  

Compactness 
A ratio between the length of the 

tumor boundary and the area 
(93). 

𝑉 (√𝜋 ∗ √𝐴23
)⁄  

Spherical Disproportion 
A measure of the spherical 

shape of the tumor. 𝐴 4√𝜋 ∗ √(
3𝑉

4𝜋
)

23

⁄  

Eccentricity 
A measure of the non-circularity 
of the tumor. An eccentricity of 0 

is a circle and 1 is a line (14). 
1 − √

𝑏2

𝑎2
 

Where a is the semi-major axis and b is the semi-minor axis. V is tumor volume and A is the tumor area. 

 
3.3.1 Shape Descriptors and First Order Features 

Shape descriptors and first order features provide contour dependent information about a ROI. Shape 

descriptors are calculated directly from the segmented ROI. First order features are extracted from image 

intensity statistics and are calculated from volume intensity histograms. A full list and description of the 
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shape descriptors and first order features that were used throughout this work are listed in Tables 3.2 - 

3.4. One particular shape descriptor, convexity, is calculated by taking a ratio of the real convex volume 

(a volume created by connecting the furthest tumor edges) to the actual tumor volume. Six first-order 

features were based on intensity volume histograms – following the method  originally introduced by El 

Naqa et al. based on dose-volume histograms (14). 

 
Table 3.3 Intensity and First-Order Features 

Feature Description Mathematical Description 

MinI 
Minimum intensity value in the volume-of-

interest(VOI). 
𝑀𝑖𝑛(𝐼) 

MaxI Maximum intensity value in the VOI. 𝑀𝑎𝑥(𝐼) 

MeanI 
Mean intensity value in the VOI. 

(The first standardized moment.) (94) 

1

𝑁
∑ 𝐼(𝑣)

𝑁

𝑣=1

 

SD 
Variation from the average intensity in VOI. 

(SD
2
 is the second standardized moment.) 

(94) 
√

1

𝑁
∑(𝐼(𝑣) − 𝐼𝑚𝑒𝑎𝑛)2

𝑁

𝑖=1

 

Skewness 
Measures symmetry of the intensity 

distribution. (Third standardized moment.) 
(94) 

1

𝑁
∑(𝐼(𝑣) − 𝐼𝑚𝑒𝑎𝑛)3/𝑆𝐷3

𝑁

𝑣=1

 

Kurtosis 
Measures shape of the peak of the intensity 
distribution. (Fourth standardized moment.)  

(94) 

1

𝑁
∑(𝐼(𝑣) − 𝐼𝑚𝑒𝑎𝑛)4/𝑆𝐷4

𝑁

𝑣=1

 

Coefficient of 
Variation 

A normalized measure of the dispersion of 
the VOI. The ratio of the standard deviation 

to the mean value of the VOI intensities. 

𝜎

𝜇
 

TGV 
Represents the total summed intensity of 

the VOI. 
∑ 𝐼(𝑣)

𝑁

𝑣=1

 

RMS 
The square root of the sum of the squares 

of the voxel intensities. √∑ 𝐼(𝑣)2

𝑁

𝑣=1

 

Energy 
A measure of the homogeneity of the 

intensity histogram. 
∑ ∑ ∑[𝑃(𝑖, 𝑗, 𝑘)]2

𝑀

𝑘

𝑁

𝑗

𝑁

𝑖

 

Contrast 
A measure of the intensity variation of the 

intensity histogram. 
∑ ∑ ∑ 𝑃(𝑖, 𝑗, 𝑘)

𝑀

𝑘

𝑁

𝑗

𝐿

𝑖

 

Where I(v) is the intensity of a voxel, N is the number of voxels in a volume-of-interest (VOI), and p(i) is the probability of the 
occurrence of the grey-level i (37).Where w(i) is the width of the ith bin of the histogram, and TGV is total summed intensity. 
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Table 3.3 (Continued) 

Feature Description Mathematical Description 

Local 
Homogeneity 

Opposite of contrast. ∑ ∑ ∑
𝑃(𝑖, 𝑗, 𝑘)

(1 + 𝑖2 + 𝑗2 + 𝑘2 − 𝑗𝑘 − 𝑗𝑘 − 𝑖𝑘)

𝑀

𝑘

𝑁

𝑗

𝐿

𝑖

 

Histogram 
Entropy 

A measure of entropy of the intensity 
histogram of a VOI (95). 

− ∑ 𝑝(𝑖)log (
𝑝(𝑖)

𝑤(𝑖)
)

𝑁

𝑖=1

 

Uniformity 
Histogram based assessment of the number 

of voxels at each intensity value. 
Sum of squares of number of voxels 

for each intensity value. 

Entropy A measure of the information content (37). − ∑ 𝑝(𝑖)𝑙𝑜𝑔2𝑝(𝑖)
𝑁𝑔

𝑖=1
 

Where I(v) is the intensity of a voxel, N is the number of voxels in a volume-of-interest (VOI), and p(i) is the probability of the 
occurrence of the grey-level i (37).Where w(i) is the width of the ith bin of the histogram, and TGV is total summed intensity. 

 
 

Table 3.4 Additional Intensity and First-Order Features 

Feature Description 

I30 Intensity ranging from the lowest 30% to highest intensity volume. 

I10-I90 
Intensity ranging from lowest to 10% highest intensity volume  minus intensity ranging from 

lowest to 90% highest intensity volume. 

V40 Percentage volume with at least 40% intensity 

V70 Percentage volume with at least 70% intensity 

V80 Percentage volume with at least 80% intensity 

V10-

V90 

Percentage volume with at least 10% intensity minus percentage volume with at least 90% 

intensity 

I30 Intensity ranging from the lowest 30% to highest intensity volume. 

PeakI Peak intensity in the VOI. 

 

 

3.3.2 GLCM Features 

GLCM features, originally described by Haralick et al, provide texture information about 

the spatial relationships of voxels and “summarize the relative frequency distribution” of an 

image (29). These features describe relationships between pixel pairs and describe how often a 

pixel of gray level i occurs in a defined spatial relationship to a pixel gray level j. A matrix 
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containing these relationships is formed in a discrete number of grey level bins (usually 32, 64, 

128, or 256). These gray levels are listed on both the row (i) and column (j) of the matrix (see 

Figure 3.2). An algorithm counts the number of instances that two pixel intensities are adjacent 

to each other in 13 directions. A matrix is created with this data (see Figure 3.2b). Features are 

shown in Tables 3.5 and 3.6. Figure 3.2 (see page 37) demonstrates a sample image and 

sample GLCM in the 0° direction (horizontal). This image has 5 intensity levels and each 

intensity is given its own bin. In the zero direction, the matrix is formed by noting the number of 

time pixels of gray level i and j are adjacent. For instance, gray levels 3 and 2 occur in adjacent 

pixels twice. The GLCM is a symmetrical matrix and is normalized by dividing each matrix 

element by the number of possible pixel pairs, (𝑁𝑥 − 1) ∗ 𝑁𝑦, where 𝑁𝑥 represents the height 

and 𝑁𝑦 represents the width of the image. Thus the GLCM matrix element for (3,2) and (2,3) is 

listed as 2/20.  

 

Figure 3.2 (a) Sample figure; (b) Sample GLCM matrix in the 0° direction (horizontal) based on a 5x5 
pixel image with 5 grey-levels. 
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Table 3.5 GLCM Features. 

Feature Description Mathematical Description 

Energy 

Also defined as Angular Second 
Moment. This feature describes the 
homogeneity of an image. 0 represents 
complete heterogeneity. 1 represents 
complete homogeneity (96). 

∑ ∑ 𝑝(𝑖, 𝑗)2

𝑁

𝑗=1

𝑁

𝑖=1

 

Entropy 
Measures the pair contributions and 
information content. 

∑ ∑ 𝑝(𝑖, 𝑗) log 𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 

Contrast 

Measures local intensity variation. This 
favors matrix values that are away from 
the diagonal. A value of 0 demonstrates 
no contrast. 

∑ 𝑛2

𝑁−1

𝑛=0

{∑ ∑ 𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

} , |𝑖 − 𝑗| = 𝑛 

Homogeneity 

Measures local intensity variation. This 
favors matrix values that are close to the 
diagonal. A value of 0 demonstrates 
dissimilarity. 

∑ ∑
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

𝑁

𝑗=1

𝑁

𝑖=1

 

Local 
Homogeneity 

Measures the relation of GLCM 
intensities to the diagonal GLCM matrix. 
A value of 1 represents total 
homogeneity. A value of 0 represents 
non-homogeneity (96). Also defined as 
Inverse Difference Moment. 

 

∑ ∑
𝑝(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2

𝑁

𝑗=1

𝑁

𝑖=1

 

Correlation 

Measures correlation between co-
occurrence matrix values. Measures 
gray level linear dependence between 
pixels. 

 
∑ ∑ (𝑖𝑗)𝑝(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦
 

Cluster Shade 
Measures of the skewness of the matrix. 
High values = non-symmetry 

∑ ∑ ((𝑖 − 𝜇𝑖)

𝑗𝑖

+ (𝑗 − 𝜇𝑗))
3

𝑝(𝑖, 𝑗) 

Cluster 
Prominence 

Measures of the skewness of the matrix. 
High values = non-symmetry. A peak in 
the matrix near mean value = small 
variation in gray-scales. 

∑ ∑ ((𝑖 − 𝜇𝑖)

𝑗𝑖

+ (𝑗 − 𝜇𝑗))
4

𝑝(𝑖, 𝑗) 

Cluster 
Tendency 

Measures groups of pixels with similar 
intensity values (97). 

∑ ∑(𝑖 + 𝑗 − 2𝜇)𝑘𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗

𝑁𝑔

𝑖

 

Mean 
(Co-occurrence 

Matrix) 

The mean value of the co-occurrence 
matrix values. 

∑ ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗

𝑁𝑔

𝑖

 

Variance 
Places high weight on values differing 
from the average matrix value. 

∑ ∑ (𝑖 − 𝜇)2𝑝(𝑖, 𝑗) +
𝑁𝑔

𝑗

𝑁𝑔

𝑖

(𝑗 − 𝜇)2𝑝(𝑖, 𝑗) 

Where p(i,j) is the(i,j)th entry in a normalized grey-level co-occurrence matrix and p(i,j) is the (i,j)th entry in a non-normalized grey-
level co-occurrence matrix. N is the number of grey-levels, px is the ith entry obtained by summing the rows of p(i,j). py is the jth 

entry obtained by summing the columns of p(i,j). HX and HY are entropies of px and py. GLCM features were originally developed by 
Haralick et al. (29, 98). 
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Table 3.5 (Continued) 

Feature Description Mathematical Description 

Dissimilarity 
Contrast weighted linearly with the 
difference of grey-level values (distance 
from diagonal where 0=similarity) (37) 

∑ ∑|𝑖 − 𝑗|𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Max Probability 

Detects the most frequent pattern (93). 
Expected to be high if there is a high 
occurrence of the most predominant 
pixel pair (97). 

𝑀𝑎𝑥
𝑖,𝑗

𝑁𝑔,𝑁𝑔𝑝(𝑖, 𝑗) 

Where p(i,j) is the(i,j)th entry in a normalized grey-level co-ocurrence matrix and p(i,j) is the (i,j)th entry in a non-normalized grey-
level co-occurrence matrix. N is the number of grey-levels, px is the ith entry obtained by summing the rows of p(i,j). py is the jth 

entry obtained by summing the columns of p(i,j). HX and HY are entropies of px and py. GLCM features were originally developed by 
Haralick et al. (29, 98). 

 

Table 3.6. Additional GLCM Features. 

Feature Mathematical Description 

Sum Average ∑ 𝑖𝑝𝑥+𝑦

2𝑁𝑔

𝑖=2

(𝑖) 

Sum Variance ∑(𝑖 + ∑ ∑ 𝑝(𝑖, 𝑗) log(𝑝(𝑖, 𝑗)))2

𝑁𝑔

𝑗

𝑁𝑔

𝑖

log{𝑝𝑥+𝑦(𝑖)}

2𝑁𝑔

𝑖=2

 

Sum Entropy − ∑ ∑ 𝑝𝑥+𝑦(𝑖)log{𝑝𝑥+𝑦(𝑖)}

𝑁𝑔

𝑗

𝑁𝑔

𝑖

 

Difference Average ∑ 𝑖𝑝𝑥−𝑦
(𝑖)

2𝑁𝑔

𝑖=2

 

Difference Variance ∑(𝑖 + ∑ ∑ 𝑝(𝑖, 𝑗) log(𝑝(𝑖, 𝑗)))2

𝑁𝑔

𝑗

𝑁𝑔

𝑖

log{𝑝𝑥−𝑦(𝑖)}

2𝑁𝑔

𝑖=2

 

Difference Entropy − ∑ ∑ 𝑝𝑥−𝑦(𝑖)log{𝑝𝑥−𝑦(𝑖)}

𝑁𝑔

𝑗

𝑁𝑔

𝑖

 

Inverse Variance ∑ ∑
𝑃(𝑖, 𝑗)

(𝑖 − 𝑗)2

𝑗𝑖

 

Inverse Variance P ∑ ∑
𝑝(𝑖, 𝑗)

(𝑖 − 𝑗)2

𝑗𝑖

 

Where p(i,j) is the(i,j)th entry in a normalized grey-level co-ocurrence matrix and p(i,j) is the (i,j)th entry in a non-normalized grey-
level co-occurrence matrix. N is the number of grey-levels, px is the ith entry obtained by summing the rows of p(i,j). py is the jth 

entry obtained by summing the columns of p(i,j). HX and HY are entropies of px and py. GLCM features were originally developed by 
Haralick et al. (29, 98). 
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Table 3.6 (Continued) 

Feature Mathematical Description 

Inverse Difference ∑ ∑
𝑝𝑖𝑗

1 + (𝑖 − 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 

Information Measure of Correlation 1 

𝐻𝑋𝑌 = − ∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔{𝑝(𝑖, 𝑗)}

𝑁𝑔

𝑗

𝑁𝑔

𝑖

 

𝐻𝑋𝑌1 = − ∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔{𝑝𝑥(𝑖)𝑝𝑦(𝑗)}
𝑁𝑔

𝑗

𝑁𝑔

𝑖
, 

𝐻𝑋𝑌2 = − ∑ ∑ 𝑝𝑥(𝑖)𝑝𝑦(𝑗)𝑙𝑜𝑔{𝑝𝑥(𝑖)𝑝𝑦(𝑗)}
𝑁𝑔

𝑗

𝑁𝑔

𝑖
,, 

𝐻𝑋𝑌 − 𝐻𝑋𝑌1

𝑚𝑎𝑥{ℎ𝑥, ℎ𝑦}
 

Information Measure of Correlation 2 √1 − e[−2.0(𝐻𝑋𝑌2−𝐻𝑋𝑌)]2
 

Autocorrelation ∑ ∑ 𝑖 ∗ 𝑗 ∗ 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Where p(i,j) is the(i,j)th entry in a normalized grey-level co-ocurrence matrix and p(i,j) is the (i,j)th entry in a non-normalized grey-
level co-occurrence matrix. N is the number of grey-levels, px is the ith entry obtained by summing the rows of p(i,j). py is the jth 

entry obtained by summing the columns of p(i,j). HX and HY are entropies of px and py. GLCM features were originally developed by 
Haralick et al. (29, 98). 

 

 

3.3.3 Run Length Matrix Features 

The Run Length Matrix (RLM) was originally introduced by Galloway (64). The RLM is a 

matrix consisting of dimensions LxR where L is the number of grey levels and R is the number 

of possible runs. A run is a set of adjacent voxels that possess the same grey level in a 

particular direction. A sample RLM is demonstrated in Figure 3.3. The RLM consists of 5 

traditional features proposed by Galloway (64), 2 features proposed by Chu et al. (99), and 4 

features proposed by Dasarathy and Holder (100). These features are introduced in Table 3.7. 

Figure 3.3 demonstrates a sample image and sample RLM in the 0° direction (horizontal). This 

image has 5 intensity levels. The gray level 3 occurs in a run 1 pixel long 4 times. Thus, the 

GLCM matrix element (R,L) for (3,1) is 4. 
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Figure 3.3 (a) Sample Image; (b) RLM Matrix calculated based on sample image with 5 grey levels in the 
0° direction. 

 

3.3.4 Grey Level Size Zone Matrix Features 

The Grey Level Size Zone Matrix (GLSZM) was developed by Thibault (63, 101) 

according to the run length matrix principle. This principle states that the value of matrix z(i,j) 

equals the number of zones of size i and gray level j (101). The GLSZM is different from the run 

length matrix in that it examines “zones” instead of “pairs”. It records the size of groups of 

adjacent pixels containing the same intensity levels (see Figure 3.4). GLSZM features are 

analogs of RLM features and are described in Table 3.8. Figure 3.4 demonstrates a sample 2D 

image and sample GLSZM. Because the GLSZM measures zones it does not need to be 

measured in any particular direction. Each direction will produce the same GLSZM. The sample 

image has 5 intensity levels. GLSZM matrix element (2,1) has a value of 3 because the gray 

level 2 has a size of 1 in 3 instances. 
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Table 3.7 RLM Features 

Feature Description Mathematical Description 

SRE
a 

Measures short run distribution; (short run 
emphasis). 

1

𝑛
∑ ∑

𝑅(𝑖, 𝑗)

𝑗2

𝑁

𝑗=1

𝑀

𝑖=1

 

LRE
a 

Measures long run distribution; (long run 
emphasis). 

1

𝑛
∑ ∑ 𝑅(𝑖, 𝑗)𝑗2

𝑁

𝑗=1

𝑀

𝑖=1

 

LGRE
b 

Measures low grey-level distribution; (low grey-
level run emphasis). 

1

𝑛
∑ ∑

𝑅(𝑖, 𝑗)

𝑖2

𝑁

𝑗=1

𝑀

𝑖=1  

HGRE
b 

Measures high grey-level distribution; (high grey-
level run emphasis). 

1

𝑛
∑ ∑ 𝑅(𝑖, 𝑗)𝑖2

𝑁

𝑗=1

𝑀

𝑖=1

 

SRLGE
c 

Measures short runs and low grey-level 
distribution; (short run low grey-level emphasis). 

1

𝑛
∑ ∑

𝑅(𝑖, 𝑗)

𝑖2𝑗2

𝑁

𝑗=1

𝑀

𝑖=1  

LRLGE
c 

Measures long runs and low grey-level 
distribution; (long run low grey-level emphasis). 

1

𝑛
∑ ∑

𝑅(𝑖, 𝑗)𝑗2

𝑖2

𝑁

𝑗=1

𝑀

𝑖=1  

SRHGE
c 

Measures short runs and high grey-level 
distribution; (short run high grey-level emphasis). 

1

𝑛
∑ ∑

𝑅(𝑖, 𝑗)𝑖2

𝑗2

𝑁

𝑗=1

𝑀

𝑖=1

 

LRHGE
c 

Measures long runs and high grey-level 
distribution; (long run high grey-level emphasis). 

1

𝑛
∑ ∑ 𝑅(𝑖, 𝑗)𝑖2𝑗2

𝑁

𝑗=1

𝑀

𝑖=1

 

RLNU
a 

Measures the non-uniformity of the run lengths; 
(run length non-uniformity). 

1

𝑛
∑ (∑ 𝑅(𝑖, 𝑗)

𝑀

𝑗=1

)

2
𝑁

𝑖=1  

GLNU
a Measures the non-uniformity of the grey-levels; 

(grey-level non-uniformity). 
1

𝑛
∑ (∑ 𝑅(𝑖, 𝑗)

𝑁

𝑖=1

)

2𝑀

𝑗=1  

RPC
a 

Ratio of total number of runs to total number of 
pixels in the image. Measures homogeneity and 

run distribution; (run percentage). 

𝑛

𝑛𝑝

 

b
Where R(i,j) is an element of the Run Length Matrix, n is the total number of runs, np is the number of pixels in the image, N is the 

longest run and M is the number of grey levels. 
a
RLM features developed by Galloway et al. (64). 

b
RLM features developed by Chu 

et al. (99). 
c
RLM features developed by Dasarathy and Holder (100).   
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Figure 3.4 (a) Sample Image; (b) Sample GLSZM Matrix based on sample image with 5 grey levels. 

 

 
Table 3.8 Gray-Level Size-Zone Matrix Features. 

Feature Description Mathematical Description 

Small-area emphasis 
(SAE) 

Emphasizes small areas 
1

Ω
∑ ∑

𝑧(𝑖, 𝑗)

𝑗2

𝑛

𝑗=1

𝑚

𝑖=1

 

Large-area emphasis Emphasizes large areas 
1

Ω
∑ ∑ 𝑗2, 𝑧(𝑖, 𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

 

Low-intensity emphasis 
Emphasizes low intensity 

areas. 
1

Ω
∑ ∑

𝑧(𝑖, 𝑗)

𝑖2

𝑛

𝑗=1

𝑚

𝑖=1

 

High-intensity emphasis 
Emphasizes high intensity 

areas 
1

Ω
∑ ∑ 𝑖2, 𝑧(𝑖, 𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

 

Low-intensity small-area 
emphasis 

Emphasizes small areas with 
low intensity  

1

Ω
∑ ∑

𝑧(𝑖, 𝑗)

𝑖2, 𝑗2

𝑛

𝑗=1

𝑚

𝑖=1

 

High-intensity small-area 
emphasis 

Emphasizes small areas with 
high intensity 

1

Ω
∑ ∑ 𝑖2, 𝑗2, 𝑧(𝑖, 𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

 

Low-intensity large-area 
emphasis 

Emphasizes large areas with 
low intensity 

1

Ω
∑ ∑

𝑗2, 𝑧(𝑖, 𝑗)

𝑖2

𝑛

𝑗=1

𝑚

𝑖=1

 

Where z(i,j) is the (i,j)th entry in the z matrix, Ω is the number of homogeneous areas, n is the number of distinct intensity values 
within the tumor and m is the size of the largest homogeneous area in the z matrix (101). 
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Table 3.8 (Continued) 

Feature Description Mathematical Description 

High-intensity large-area 
emphasis 

Emphasizes large areas with 
high intensity 

1

Ω
∑ [∑ 𝑧(𝑖, 𝑗)

𝑛

𝑗=1
]

2𝑚

𝑖=1

 

Intensity variability Variance of intensity levels 
1

Ω
∑ ∑

𝑖2, 𝑧(𝑖, 𝑗)

𝑗2

𝑛

𝑗=1

𝑚

𝑖=1

 

Zone Percentage 
A ratio between the number of 

zones and the total number of 
voxels (total possible zones) 

Ω ∑ ∑ 𝑗2, 𝑧(𝑖, 𝑗)
𝑛

𝑗=1

𝑚

𝑖=1

⁄  

Size-zone variability Variance of the size-zone 
1

Ω
∑ [∑

𝑧(𝑖, 𝑗)

𝑖2

𝑛

𝑗=1
]

2𝑚

𝑖=1

 

Where z(i,j) is the (i,j)th entry in the z matrix, Ω is the number of homogeneous areas, n is the number of distinct intensity values 
within the tumor and m is the size of the largest homogeneous area in the z matrix (101). 
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Chapter Four: Variability of Image Features Computed From Conventional and 

Respiratory-Gated PET/CT Images of Lung Cancer4 

4.1 Introduction 

Positron Emission Tomography (PET) is a beneficial technology in the process of cancer 

diagnosis and staging (102, 103), monitoring tumor response to treatment (104), detecting 

necrosis and tumor heterogeneity, identifying the primary tumor location (68), and delineating 

tumors from atelectasis (105), particularly in lung cancers. In fact, studies have shown that the 

use of PET/CT improves confidence in diagnosis, increases the number of “definite” lesions by 

41% in patients with Non-Small Cell Lung Cancer (NSCLC) (70) and improves delineation 

accuracy for gross tumor volumes (GTV) in radiation therapy (68, 105). 

Conventional (3D) PET images are influenced by motion because of their relatively long 

acquisition times. The acquired coincidence counts measured and used to form the images are 

spatiotemporally averaged over multiple breathing cycles (106), consequently, for a point inside 

a mobile tumor the signal is convoluted along its trajectory of motion. Respiratory-gated PET/CT 

aims to account for respiratory motion and thereby respiration-induced image blurring. One way 

to discern the effect of motion on feature values is by comparing image feature values between 

conventional and respiratory-gated acquisition protocols, although other important factors 

stemming from the differences in the imaging protocols such as image noise are also at play. 

Thus far, only one study accounting for motion in PET images has been reported by Yip et al. 

(107), which was limited to only 5 features. This report represents the first study that evaluates 

how 3D and RG acquisitions affect a large number of image features currently being used and 

                                                      
4 Portions of this chapter have been previously published in Translational Oncology, 2015, 8(6): 524-534, 

and have been reproduced with permission from Elsevier (see Appendix B). The author of this dissertation is the first 
author of the previously published work. All figures are used with copyright permission. 
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tested in several medical applications.  Robust features that emerge from this study may be 

suitable candidates for future quantitative imaging applications involving mobile tumors. 

4.2 Materials and Methods 

4.2.1 Preliminaries 

Twenty-three lung cancer patients were retrospectively selected for a study of image 

feature variation between 3D & RG (RG is alternatively known as 4D) PET/CT images, and 

feature value variation among the 10 phases of a respiratory-gated scan. The main selection 

criterion was for these patients to have both 3D and RG PET/CT scans performed during the 

same imaging session. The 3D images were acquired in free breathing conditions for patients 

with regular breathing as required for Radiotherapy planning. There were thirteen female and 

ten male patients ranging from age 47 to 83. All lung cancer patients were diagnosed with Non-

Small Cell Lung Cancer (NSCLC). For each patient, 18F-FDG was the administered radiotracer 

and the respiratory-gated PET scan was acquired during the same session as the 3D PET scan 

in the same position per protocol for radiation treatment planning. A radiologist approved 4D 

PET/CT protocol was applied for image acquisition (108). The 3D PET/CT protocol was adapted 

for our institution from the Netherlands Protocol (109). In routine clinical practice following these 

protocols, the average scan start times after the tracer administration were 118 ± 17.3 minutes 

(standard deviation) for 3D PET and 117 ± 36.0 minutes for RG PET with average administered 

activity of 11.9 ± 2.0 mCi. A study on SUV variance in clinical FDG-PET/CT found that SUVmax 

and SUVmean were independent of variations in the uptake period (85). 

PET/CT data were obtained using a GE Discovery STE PET/CT Scanner (for 21 cases) 

and a GE Discovery 600 PET/CT Scanner (for 2 cases). The 3D CT was a standard step and 

shoot CT (not helical) and the respiratory-gated PET counts were binned into 10 phases with 3D 

CT attenuation correction applied to 4D PET data (standard protocol at our institution). The 

standard reconstruction protocol was the ordered subset expectation maximization (OSEM) 

algorithm with 20 or 28 subsets and 2 iterations. Full width at half maximum (FWHM) and field 
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of view (FOV) varied between patients: full width at half maximum of 4.29 mm, 7 mm or 10 mm, 

and field of view of 50, 60 or 70 cm were standard PET settings. Standard of practice 

procedures at our institution were followed and this study was approved with waived informed 

consent by the University of South Florida Institutional Review Board. 

4.2.2 ROI Delineation and Tumor Segmentation 

Following patient selection, the tumor region was identified using an advanced image 

viewing software (Mirada RTx, Mirada Medical, Oxford, UK), allowing identification of the 

primary tumor location and exportation of Digital Imaging and Communications in Medicine 

(DICOM) image data for 3D and RG PET/CT images. The image viewing software provided 

tumor visualization, easy access to X, Y, or Z slices of 3D PET data, and region-of-interest 

(ROI) delineation. A background-adapted thresholding method of segmentation defined by 

Dholakia et al., which accounted for background uptake, was applied to eliminate subjective 

errors and inter-observer variability (92). This method involved placing a 3-cm spherical contour 

inside the liver and extracting the mean SUV and standard deviation to calculate a threshold 

value for the lung tumor (Equation 4.1): 

 𝑀𝑇𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑆𝑈𝑉𝑚𝑒𝑎𝑛 + 2 ∗ 𝑆𝑈𝑉𝑆𝐷 (4.1) 

where SUVmean is the mean SUV value of the 3-cm sphere and SUVSD is the standard 

deviation of the  3-cm sphere's SUV values. We are aware of the many segmentation methods 

in the literature and that no one method is generally regarded optimal for general medical 

applications (49). Since we were working with lung tumors, major structures and surrounding 

tissues were minimal. Consequently there was little uptake outside the tumor volume. If, 

however, a tumor was close to the diaphragm or pleura, nearby metabolic structures were also 

segmented. Due to the adaptive segmentation method 6 PET lesions were rendered too tiny 

and were not evaluated. 

In CT images, tumors were contoured with CT threshold, a proprietary algorithm using 

Mirada RTx (RTx, Mirada Medical, Oxford, UK) (see Figure 2.1). The three-dimensional 
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contours were drawn separately on the 3D CT image and on one phase (phase 1 or phase 10) 

of the corresponding RG CT image for each patient. In our clinic, CT contours are used for 

treatment planning purposes whereas PET ensures the entire metabolic tumor volume is 

included in the gross tumor volume (GTV).  

4.2.3 Feature Extraction  

An internally-developed application imported the ROI data file and extracted image 

intensity statistics, shape descriptors, co-occurrence matrices, run length matrices, and other 

second order features from each ROI for a total of 56 image features. Although some authors 

have shown the instability of certain features from 3D images (40, 41, 45), we decided to 

include them here to analyze their stability for RG images.  Moreover, some groups have used a 

large number of features (>200; (36)). Nevertheless, we deemed 56 features sufficient to 

assess the variability between 3D and RG feature values.  

Shape descriptors were calculated directly from the segmented ROI. First order features 

(extracted from image intensity statistics) were calculated from volume intensity histograms. 

Second order grey-level co-occurrence matrix (GLCM) features, originally described by Haralick 

et al. (29, 98) were implemented with feature descriptions provided by Liang (96).  The Haralick 

definition of second order statistics (based on grey-level matrix metric), nearest neighbor spatial 

dependence matrices, provided texture information from the spatial relationship of image voxels 

(29).  

The GLCM feature calculations were implemented as follows: the intensities of image 

voxels were binned into 256 gray-scale levels for PET (128 gray-scale levels for CT) with equal 

intervals. The resulting 2D co-occurrence matrix was 256 x 256 (128 x 128) with unit (1) pixel 

distance. Co-occurrence matrices were calculated in 13 directions across a 3D image and the 

resultant matrix was the average of the matrices in the 13 directions. Given a set of cubical 

voxels, the 13 directions were: 3 axial directions, 2 diagonal directions per axial plane × 3 axial 

planes, and 4 diagonal directions cross cube (110). These 13 directions were chosen so that the 
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resulting matrix would represent the entire tumor texture without bias. The elements of the 

matrix were integers. Next, a probability matrix was calculated by dividing each element by the 

total sum of the matrix so that the sum of the probability matrix was 1. The features were then 

calculated using the probability matrix.  

Galloway’s original run length features were also implemented (64). Feature definitions 

were acquired from Galloway, Chu et al., and Dasarathy and Holder (64, 99, 100). The run 

length matrix (RLM) had dimensions of L x R, where L was the number of grey-scale levels (256 

for PET; 128 for CT) and R were the possible runs (determined case-by-case). The elements of 

the matrix were integers which represented runs. A run was defined as a set of pixels that 

possessed the same gray level in a specified direction (111). The RLM was calculated in 13 

directions across an image (similar to the co-occurrence matrix) (112). The feature values were 

the summed values of all 13 directions normalized by the total runs in each direction. No 

probability matrix was involved for the run-length features.  

In PET, the image intensity was the number of registered counts per voxel. For CT, 

intensity represented the Hounsfield Units in each voxel. All intensity levels were used. 

Normalization was applied only to the co-occurrence and run length matrices (in the form of 

binning; 128 bins). Additionally, intensity values for PET images were not converted to SUV. 

Instead, stored image intensity values were analyzed directly. For each patient, image features 

were extracted from the 3D PET ROI, 3D CT ROI, all phases (bins) of the respiratory-gated PET 

ROI, and one phase (bin) of the respiratory-gated CT ROI.  

Following feature extraction, 3D and RG PET/CT image feature differences were 

calculated using Equation 4.2,  

 %𝐷𝑖𝑓𝑓𝑖
3𝐷/𝑅𝐺

=
|𝑅𝐺𝑇𝑉𝑖−3𝐷𝑇𝑉𝑖|

𝑀𝑎𝑥(|𝑅𝐺𝑇𝑉𝑖|,|3𝐷𝑇𝑉𝑖|)
 (4.2)

 

where RGTVi is the respiratory-gated image feature value for feature i and 3DTVi is the 

3D image feature value for feature i. This method was chosen because it accounts for features 
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that changed sign between 3D and RG cases. The maximum possible percent difference using 

Equation 2 is 200% and differences greater than 100% were deemed large. The percent 

difference across cases was then averaged for each image feature and a paired, two-tailed t-

test was applied to 3D and RG feature data to compare the two datasets. We assumed normal 

distributions and that the t-test was applicable. The concordance correlation coefficient (CCC) 

was calculated for all features across 3D and RG feature data to determine the correlation 

between the two datasets. The scale used for determining strength-of-agreement was as 

follows: high strength-of-agreement – CCC > 0.99, substantial strength-of-agreement – CCC: 

0.95-0.99, moderate strength-of-agreement – CCC: 0.90-0.95, poor strength-of-agreement – 

CCC < 0.90 (113). 

4.2.4 RG (4D) PET Phase Analysis 

The previously described procedure of image feature extraction was applied to all 

respiratory-gated PET bins. Mean percent difference was used to compare features between 

phases,  

 %𝐷𝑖𝑓𝑓𝑖𝑗
𝑀𝑒𝑎𝑛 = |

(𝑇𝑉𝑖𝑗−𝜇𝑇𝑉,𝑗)

𝜇𝑇𝑉,𝑗
|  (4.3) 

where i  represents the bin, j represents the specific image feature, TVij represents the 

value for bin i and feature j, and  µTV,j represents the mean value for image feature j. Image 

feature values were also normalized by average value across all bins, 

 𝑁𝑜𝑟𝑚𝑉𝑎𝑙𝑢𝑒𝑖𝑗 =
𝑇𝑉𝑖𝑗

𝜇𝑇𝑉,𝑗
 (4.4) 

The subscript definitions for Equation 4.3 also apply to Equation 4.4. Additionally, a 

paired, two-tailed t-test was applied to RG inhale (phase 1) feature data and RG exhale (phase 

5) feature data to compare the two datasets. The CCC was calculated for phase 1 and phase 5 

of the feature data to determine correlation between the two datasets. 
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4.2.5 Long Axis Calculation and Rotation Analysis 

The long axis length (through the center of mass) was calculated with an internally-

developed program for each bin of the respiratory-gated cycle (PET only). The tumor’s center of 

mass location was calculated for the inhale and exhale phases of the respiratory-gated PET 

image sets (Equation 4.5).  

 𝐶𝑀(𝑥, 𝑦, 𝑧) = [
∑ 𝐼𝑖𝑥𝑖𝑖

∑ 𝐼𝑖𝑖
,

∑ 𝐼𝑖𝑦𝑖𝑖

∑ 𝐼𝑖𝑖
,

∑ 𝐼𝑖𝑧𝑖𝑖

∑ 𝐼𝑖𝑖
]  (4.5) 

where 𝐶𝑀(𝑥, 𝑦, 𝑧)is the center of mass for a tumor in a PET phase and iI  is the number 

of counts per voxel i. The center of mass motion (CMM) was calculated as the displacement 

between the center of mass for inhale phase and center of mass for exhale phase. The 

difference in long axis length and CMM were used to assess changes in internal tumor 

morphology. Tumor angle was defined as the angle between the long axis of the tumor and the 

XY plane (see Figure 4.1). A Pearson’s correlation test was applied to identify correlation in 

tumor angle and long axis length between inhale and exhale images.  

4.3 Results 

4.3.1 3D and RG PET/CT Image Feature Analysis 

Features from both PET and CT images demonstrated dependency on whether the 

acquisition was 3D, which is conventional (also called static), or respiratory-gated, (RG or 4D), 

where the coincidence counts are binned in multiple phases/bins composing the respiratory 

cycle. Large differences in some features were found between 3D PET/CT and one of the 

phases/bins of the corresponding respiratory-gated data set. The percent differences between 

3D and respiratory-gated modalities were usually larger for CT than for PET. For PET, 10 of 56 

features had a percentage difference (between 3D PET and RG PET for each patient) of less 

than 5% for more than half of the cases. In comparison, 11 of 56 CT features had a percentage 

difference (between 3D CT and RG CT for each patient) of less than 5% for more than half the 

cases. The percent differences between 3D PET and RG PET varied from 0% to 193%. The 
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outlier of 193% was kurtosis.  For 4 of 17 cases, kurtosis demonstrated the greatest percent 

difference between 3D and RG PET. Image feature average differences between 3D PET and 

RG PET are shown in Table 4.1. 

 
Figure 4.1 Method of tumor rotation calculation. First, the tumor volume is delineated at exhale (phase 1) 
and inhale (phase 5) on RG PET images. Second, the center of mass of each volume is calculated. The 
long axis length (longest diameter) through the center of mass of the tumor is calculated. Then, the angle 
between the long axis length and the XY-plane is calculated. This angle is compared between the exhale 
(phase 1) and inhale (phase 2) to determine the pseudo-tumor rotation. 

 
Percent differences between 3D CT and RG CT varied from 0% to 176%; kurtosis again 

being the outlier. Figure 4.2 shows selected feature percent differences and Table 4.2 shows 

image feature average differences between 3D and RG CT. Forty-six percent of the CT features 

between 3D CT and RG CT presented average percent differences larger than 20%. In some 

cases average percent differences were larger than 50%. Table 4.3 displays the number and 

percent of total features with specific percent differences for CT, PET, and PET RG phases.  
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Figure 4.2 Average differences between 3D and Respiratory-Gated Image Features. %Diffi
3D/RG

  between 

selected image features from 3D PET/CT and RG PET/CT.  

 

Table 4.1 Features Presenting Average Differences Between 3D and RG PET Image Features. 

<2% 
Difference 

<5% 
Difference 

<10% 
Difference 

<15% 
Difference 

<20% 
Difference 

>50% 
Difference 

SRE Sphericity 
Surface 

Area/Volume 
Volume V10-V90 

Minimum 
Intensity 

 
Spherical 

Disprorportion 
Compactness Surface Area 

Contrast 
(1st order) 

Mean 
Intensity 

 
Entropy (1st 

order) 
Convexity Long Axis 

Co-
occurrence 

Mean 
Kurtosis 

 
Information 
Measure of 

Correlation 2 

Entropy 
(2nd order) 

Short Axis Sum Average TGV 

 RPC Sum Entropy 
Local 

Homogeneity 
(1st order) 

Information 
Measure of 

Correlation 1 
RMS 

  
Difference 

Entropy 
Difference 
Average 

 I30 

   
Difference 
Variance 

 I10-I90 

     LRLGE 
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Table 4.2 Features Presenting Average Differences Between 3D and RG CT Image Features. 

<2% 
Difference 

<5% 
Difference 

<10% 
Difference 

<15% 
Difference 

<20% 
Difference 

>50% 
Difference 

Minimum 
Intensity 

Mean 
Intensity 

Convexity 
Surface 

Area/Volume 
Volume Kurtosis 

SRE RMS LRE Sphericity SD TGV 

 I30  Compactness 
Coefficient of 

Variation 
V70 

 RPC  
Spherical 

Disproportion 
I10-I90 V80 

   
Difference 

Entropy 

Local 
Homogeneity 
(2nd Order) 

Energy (1
st
 

Order) 

    Sum Average 
Cluster 
Shade 

     
Cluster 

Prominence 

     
Co-

occurrence 
Mean 

     
Co-

occurrence 
Variance 

     GLNU 
     RLNU 

 
Overall, 249 of 952 (26.2%) of all PET features (56 features per patient) had a percent 

difference of less than 5% between 3D and RG protocols whereas, 342 of 1288 (26.6%) of all 

CT features (56 features per patient) had a percent difference of less than 5% between 3D and 

RG scans. Table 4.4 shows features that had percent differences between 3D and RG protocols 

for all cases for both PET and CT modalities. 

 

Table 4.3 Percent Differences (%Diffi
3D/RG

) between Image Features of 3D and RG, PET and CT Images 

and Conglomerate Image Features of RG PET phases for all cases (%𝐃𝐢𝐟𝐟𝐢𝐣
𝐌𝐞𝐚𝐧). 

 CT PET PET RG Phases 

Percent 
Difference 

No. of 
Features

a
 

(1288 
total) 

% Total 
Features

a
 

No. of 
Features

a
 

(952 
total) 

% Total 
Features

a
 

No. of 
Features

a
 

(9464 
total) 

% of 
Total 

Features
a
 

<5% 342 26.6% 249 26.2% 5051 53.4% 

<10% 498 38.7% 405 42.5% 7258 76.7% 

<15% 617 47.9% 515 54.1% 8043 85.0% 

<20% 697 54.1% 585 61.4% 8410 88.9% 

>20% 591 45.9% 367 38.6% 998 10.5% 
a
Total number of features refers to 56 image features per tumor. 
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According to the CCC strength-to-agreement scale by McBride et al., PET and CT 

feature subtypes demonstrated poor correlation between 3D and RG images (113) (see Figure 

4.3). This was demonstrated by CCC strength-to-agreement values less than 0.90 for each 

feature subtype (shape, first order, GLCM, and RLM). However, there were specific features 

that demonstrated substantial strength-of-agreement. These were from the shape and first-order 

features in PET and shape features only in CT. 

 
Table 4.4 Image Features with Common Average Differences in 3D/RG PET and CT. 

Percent Difference Common Features 

<2% SRE 

<5% -- 

<10% 
Convexity, 1

st
 and 2

nd
 order Entropy, Sum Entropy, LRE, 

RPC 

<15% 
Surface Area/Volume, Sphericity, Compactness, Spherical 
Disproportion, Difference Entropy, Information Measure of 

Correlation 2 

<20% Volume, Long Axis Length,V10-V90, Sum Average 

>50% Kurtosis, TGV 

 

 
Figure 4.3 Concordance correlation coefficients for each feature with mean and standard deviation for 
each feature subtype for (A) 3D/4D CT and (B) 3D/4D PET. 

 
The paired, two-tailed, t-test for 3D PET and RG PET features revealed 17 PET features 

with p values <0.05 (indicating that these datasets are different). The t-test for 3D CT and RG 
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CT features revealed 12 CT features with p values <0.05. Features with p values <0.05 for both 

PET and CT were entropy (1st order), compactness, and information measure of correlation 1 

and 2.  

4.3.2 RG (4D) PET Phase Analysis 

Results indicated a weak dependency (relative to the differences between 3D and RG 

presented above) of all PET features on respiration phase in RG scans of 10 phases (see 

Figure 4.4). The most robust features (less than 5% difference among RG phases) belonged to 

select features from all categories (shape descriptors, first and second order features). 

Sphericity, spherical disproportion, information measure of correlation 2, SRE, and LRE were 

within 10% difference of the average value for all cases across all phases. Normalized image 

features across 10 phases for RG PET demonstrated that for all patients, 77% (7258:9464) of 

image features (56 features per phase per patient) varied less than 10% from the average 

values and 10.5% (998:9464) demonstrated more than 20% difference from average values 

(Table 3). Features with the largest difference (>50%) were kurtosis, LGRE, SRLGE, and 

LRLGE. The paired, two-tailed, t-test for RG PET inhale and RG PET exhale feature data 

revealed one PET feature, namely short axis length, with p value <0.05. The CCC revealed that 

the shape features had the highest CCC strength-to-agreement between image datasets from 

phases 1 and phase 5 (mean CCC strength-to-agreement 0.95; moderate). First order features 

and GLCM had mean strength-to-agreement values of 0.93 (moderate) and RLM features 

exhibited mean CCC strength-to-agreement of 0.86 (poor).  

4.3.3 Overall Feature Results 

Comparisons of results among respiratory-phases and 3D-to-RG PET features, we 

concluded that the features with least variability overall for PET images were sphericity, 

spherical disproportion, 1st order entropy, information measure of correlation 2, and SRE. 

Features demonstrating the greatest variability were kurtosis and LRLGE. For CT images, 

features with the least variability were minimum intensity, mean intensity, RMS, SRE, and RPC, 
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while features with the greatest variability were kurtosis, V70, V80, energy (1st order), cluster 

shade, cluster prominence, co-occurrence mean, co-occurrence variance, GLNU, and RLNU. 

 
Figure 4.4 Feature dependency on respiration phase for selected features. (A) Normalized GLNU across 
10 phases of RG PET image sets. (B) Normalized Correlation across 10 phases of a RG PET image set.  

 

4.3.4 Long Axis Tumor Length, Rotation, and Center of Mass Motion (CMM) 

The long axis tumor length and rotation results demonstrated that tumors exhibited 

deformation over respiratory-gated phases. A Pearson’s correlation test demonstrated that there 

was a weak correlation between the tumor angle with respect to the XY plane at inhale and the 

same angle in the corresponding 3D image (R=0.350), and a weak correlation between the 

tumor angle at the exhale phase and the corresponding 3D image (R=0.319). There was a weak 

correlation between 3D image tumor volume and the 3D image tumor angle (R=-0.399) and 

long axis length was not correlated to the breathing cycle. Table 5 shows that the long axis 

length of the tumor was inconsistent across inhalation phase (phase 1), 3D scan and exhalation 

phase (phase 5). The long axis lengths of the tumor for 3D, phase 1, and phase 5 were highly 

correlated (3D and phase 1: R=0.936, 3D and phase 5: R=0.954, phase 1 and phase 5: 

R=0.986), but long axis lengths between phase 1 and phase 5 varied indicating a possible 

change in tumor shape during the respiratory cycle. The largest difference was case 11 with 

long axis lengths of 124.5 mm and 139.9 mm for phase 1 and phase 5, respectively, while the 
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long axis length for 3D was 147.4 mm. There was a weak to moderate correlation between 

tumor angle at the inhale phase and the exhale phase (R=0.438) indicating tumor rotation 

during the respiratory cycle. Moreover, the long axis angle changed from positive to negative 

indicating tumor rotation. There was also a weak to moderate negative correlation between 

average percent difference in 3D and RG images (in PET) and center of mass motion (R=-

0.445). 

Table 4.5 Long Axis Lengths of Lung Tumors on 3D PET Images and RG PET Images at Exhale and 
Inhale.  

Case 
Length (mm) 

Angle (relative to XY 
axis) 

Volume (cc) CMM 
(mm) 

3D Exhale Inhale 3D Exhale Inhale 3D Exhale Inhale 

1 31.58 46.29 35.65 18.10 -25.08 -39.95 12.57 12.79 12.36 3.70 

2 67.19 69.78 66.97 -25.98 -48.58 -22.99 45.77 40.45 40.02 4.21 

3 62.73 76.31 71.78 38.72 0.00 -43.10 82.56 81.77 77.24 6.22 

4 24.67 25.85 24.92 7.62 -14.65 -7.54 4.69 4.44 4.14 1.87 

5 41.00 41.98 40.38 -13.84 22.92 34.53 23.47 24.94 21.81 13.30 

6 49.21 44.18 43.71 -36.73 31.20 -8.61 30.41 30.18 29.75 2.99 

7 125.95 133.22 126.72 -65.32 -68.87 -61.33 140.78 119.62 113.54 3.35 

8 55.03 46.76 46.66 -40.82 -24.81 -57.25 24.84 20.84 19.90 1.29 

9 28.11 21.67 21.96 13.45 26.91 -17.33 6.45 4.38 4.31 0.28 

10 29.05 24.78 21.96 19.74 -15.30 17.33 6.85 4.67 4.74 1.71 

11 147.42 124.53 139.92 -36.79 6.03 -37.42 571.04 419.89 427.80 0.16 

12 63.53 68.11 63.27 27.60 22.59 14.98 64.35 58.92 53.38 4.08 

13 46.96 48.25 55.16 16.17 -7.79 -62.77 26.21 24.21 28.17 2.05 

14 54.12 54.02 54.02 17.58 14.01 14.01 33.25 33.34 32.91 0.49 

15 10.94 47.98 47.98 0.00 -15.82 -15.82 35.40 27.38 30.46 0.29 

16 24.59 20.40 19.86 23.51 -18.70 -19.23 6.75 3.81 2.80 4.60 

17 41.55 47.61 39.99 18.35 -33.33 19.09 26.01 22.70 22.99 2.84 

 

4.4 Discussion 

RG PET scans can provide a “snapshot” of the tumor within a phase along the breathing 

cycle, thereby greatly reducing the effects of motion on a tumor’s shape, volume, and image 

feature values. In contrast, 3D PET scans convolute the absorbed activity distribution over the 

motion/deformation pattern a tumor and its surroundings experience during multiple respiration 

cycles (25). Consequently, a 3D (static) PET may fail to provide accurate position, volume and 
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absorbed activity distribution for a mobile tumor. This is especially true in the thoracic region 

and regions with substantial internal motion. This agrees with Adams’ finding that respiratory 

motion affects the SUV with changes up to 30% and that any moving lesion would be 

inaccurately measured due to the effects of blurring (69). In addition, patient motion/breathing is 

known to cause image artifacts due to a mismatch in registration between CT attenuation 

correction and emission scans (109).  Internal motion, as the results support, notably affected 

the image feature values of PET and CT images. The percent differences between 3D and RG 

CT were generally greater than those in PET. CT images have higher spatial resolution than 

PET images, and therefore more voxels for texture formation and thus a greater sensitivity to 

motion. In addition, 3D CT may also be affected by motion depending on the acquisition 

protocol (114). 

In addition to the affine tumor motion caused by respiration, we identified deformation of 

tumors (characterized by varying tumor axis lengths and angles with respect to the XY-plane 

between 3D PET, RG PET at inhale, and RG PET at exhale). Conceivably, rotations and 

deformations also affect image feature values. Our results demonstrated a weak correlation 

between the long axis angles of RG images at inhalation and exhalation. There was also an 

inconsistency of long axis length between 3D images, RG images at inhale and RG images at 

exhale; thus indicating that tumor shape and rotation varied between phases. The degree to 

which rotations and/or deformations affect image features, and in particular texture values, 

requires further investigation.  Interestingly, there was no correlation between CMM, tumor 

volume, or long axis length with 3D/RG feature value differences based on Pearson’s 

correlation tests. There was, however, a weak to moderate correlation between CMM and 

average percent difference.  Nonetheless, it is clear from our data that the feature value 

differences between RG phases are smaller than the differences between 3D images and RG 

images at a given phase. In other words, the rotational motion and/or deformation of the tumors 

in our patient cohort had a smaller effect on image feature values than the averaging effects of 
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the static acquisition. Yip et al. also investigated variability of texture features between 3D and 

RG imaging (107). In contrast to our study, they tested only five image features (contrast, 

busyness, coarseness, maximal correlation coefficient, and long run low gray). They found that 

differences between 3D and RG PET were significant (107) after having accounted for noise 

differences due to different acquisition times. This agrees with our findings that certain features 

(e.g., kurtosis and LRLGE) demonstrated large variability between 3D and RG protocols. There 

were, however, certain features in our study (e.g., SRE, 1st order entropy, and RPC) that did not 

demonstrate large variability between protocols. 

Figure 4.2 and Tables 4.1-4.3 show differences between feature values from 3D and RG 

protocols. The features with the smallest change across PET for all RG bins and for 3D PET 

were sphericity, spherical disproportion, entropy (1st and 2nd order), sum entropy, information 

measure of correlation 2, SRE, LRE, and RPC. Interestingly, a study by Galavis et al. on the 

variability of PET texture features caused by different acquisition modes and reconstruction 

parameters demonstrated that 1st order entropy exhibited small variation (≤ 5%) while 2nd order 

entropy, and sum entropy exhibited intermediate variability (10%-25%) (45). Our results were 

comparable, showing that 1st order entropy exhibited variation smaller than 5% and that 2nd 

order entropy and sum entropy exhibited less than 10% difference between 3D and RG PET 

protocols. Sum entropy, 2nd order entropy, and the information measure of correlation 2 are 

based on entropy calculations which measure randomness in a pattern.  A portion of the 

randomness can be attributed to the noise intrinsic to the scanner while the remaining can be 

attributed to statistical differences in counts (quantum noise).  Hence 3D images are less noisy 

than RG images since percentage image noise is given by (1 √N⁄ ) ∙ 100, where N is the count 

density (counts/cm2).  Thus, 3D/RG feature differences are a combination of both tumor motion 

and count statistics. This suggests that it would be informative to normalize for count density. 

Unfortunately, this study was retrospective and list-mode data were not accessible for 

normalization. Nevertheless, the number of counts and therefore the noise among RG images 



www.manaraa.com

 
59 

 

from the 10 phases can be assumed similar.  Therefore, the differences in feature values from 

phase to phase may be attributed to the effect of motion and/or deformation. 

The features LRE, SRE, and RPC, which demonstrated small change across PET for all 

RG bins and 3D PET are features from the run length matrix. LRE measures the long run 

emphasis distribution. Correspondingly, SRE measures the short run emphasis distribution. Run 

percentage is the ratio of the number of runs to the number of pixels in an image (Table 4.5). 

We conclude that the cumulative number and length of short runs and cumulative number and 

length of long runs does not vary significantly between 3D and RG images, and that the total 

number of runs does not vary significantly between 3D and RG images.  These conclusions 

may depend on the algorithms used to calculate these features.  For example, in this paper we 

averaged runs from 13 directions; other definitions are possible. 

Feature differences between 3D and RG in PET and CT images that showed large 

differences (>50%) were typically features from intensity volume histograms such as kurtosis 

and TGV. Thus, the intensity histogram distributions between 3D and RG features were quite 

different in terms of symmetry about their means and the degrees of “peakness” of their 

distributions. Cluster shade and cluster prominence exhibited large differences in CT. These 

features measure the skewness of the GLCM (93). According to Ion, a high cluster shade value 

reveals an asymmetric image (93).  

Overall, it is clear that image feature values are different between 3D and RG images. 

As discussed above this is due to both the smearing effects of tumor motion, both affine and 

non-affine, and noise intrinsic to image acquisition—the former apparently having larger effect 

(107).  This is also supported by the relative variation in feature values from different phases of 

the RG scans even though the tumor VOIs varied from phase to phase due to motion and 

deformation. Thus, the motion convoluted into the 3D images seems to have a greater effect on 

feature values than noise, given that the RG images are intrinsically noisier due to lower counts 

(acquisition times).  This study suggests that it would be important to account for motion in 
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quantitative image feature analysis, regardless of modality (PET or CT), as attempted by other 

investigators (38). Alternatively, if the definition of any one feature includes details of the 

acquisition protocol, then 3D and RG features may be treated as “different” sets of features.  

Further studies are needed to elucidate the potential usefulness of this alternative definition. 

4.4.1 Limitations 

Though our results clearly demonstrated that image feature values were different 

between 3D and RG protocols, there were limitations to the study. First of all, we were unable to 

normalize for count density between 3D and RG protocols. Another limitation was the 

nonconformity of the uptake time with the protocol. This was mainly due to clinical logistics. 

Also, partial volume effects were not taken into account. Since 3D and respiratory-gated data on 

same patient were acquired on the same scanner, and hence partial volume effects were similar 

in both sets of images except for the effect of motion, we did not take these affects into account. 

In addition, binning artifacts and breathing irregularities were assumed negligible since only 

patients with regular breathing patterns are candidates for RG PET for radiotherapy in our 

institution (115). Another limitation was that 4D PET received 3D CT attenuation correction. This 

is currently standard procedure at our institution. Lastly, our patient size was limited, but 

comparable to other published studies (37, 38, 107). We plan to address these limitations in 

future studies.  

4.5 Conclusions 

This study investigated the variation of image features between 3D and respiratory-

gated PET/CT images of lung tumors. To our knowledge, this is the first study that evaluates 

how 3D and RG acquisitions affect a large number of image features currently being used and 

tested in several medical applications. The data showed that image feature analysis using a 

static acquisition (3D) versus a respiratory-gated acquisition (to account for motion of the ROI) 

revealed notably different feature values.  The results support that these differences are mainly 

due to the effect that respiratory motion has on image features. We have also concluded that 
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rotational motion and deformation of the tumor also affect the features of an image. However, 

the effect of rotational motion and deformation from phase to phase appear to be smaller than 

the averaging/smearing effects of static acquisition.  In sum, this study calls attention to the 

differences in 3D and RG image feature values for mobile tumors.  The predictive and/or 

prognostic power of RG versus 3D image feature values will be explored in future studies.  
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Chapter Five: Sensitivity of Image Features to Noise in Conventional and Respiratory-

Gated PET/CT Images of Lung Cancer: Uncorrelated Noise Effects5 

5.1 Introduction 

Clinical imaging by Positron Emission Tomography (PET) and Computed Tomography 

(CT) is evolving into a quantitative discipline where a large number of metrics are computed in 

the intensity and gray-level matrix domains; this discipline has been termed Radiomics (36, 42). 

Radiomics of CT & PET images have shown promise as a diagnostic, prognostic, and predictive 

tool in cancer treatment (13, 33, 36, 40, 116). It is also being combined with other “omics” (e.g., 

genomics, transcriptomics, proteomics, metabolomics) into decision support systems (84). 

However, features are sensitive to various acquisition conditions (scanner type, image 

reconstruction algorithm, etc.) (13, 33, 36, 40, 45, 116). One major confounding factor 

introduced by these conditions is the presence of various random contributions to the signal, 

commonly referred to as noise.  However, few authors have examined the impact that quantum 

or electronic noise can have on Radiomic features. In this paper, we examine the influence of 

electronic noise, a signal independent contributor to image noise, on Radiomics.  

An image feature is a quantity that provides quantitative information about an image. It 

can be derived directly from the image (1st order), or from heterogeneity matrices that are 

derived from the image (2nd order).  Image features or “metrics” that describe image texture and 

heterogeneity analyze relationships between voxel pairs or groups of voxels. When noise is 

introduced into an image the fundamental relationships between voxels are altered. As a result, 

the image metrics are also altered and the texture or heterogeneity of the object may be 

misrepresented. If not accounted for, this noise can have significant implications on the clinical 

utility of image features. Although there are protocols for the standardization of PET/CT 

                                                      
5 Portions of this chapter have been submitted for publication. 
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imaging, image noise varies between scanners, manufacturers, and institutions (109, 117, 118). 

Thus, the impact of noise on image features may adversely affect multi-institutional studies 

involving radiomics.   

Although the focus of this study is on image noise, motion is also a factor that affects 

image quality. It can affect SUV by up to 30% and causes image artifacts because of 

registration mismatches in the attenuation correction (CT) and emission scans (69, 109). In 

PET, respiratory-gated (RG or 4D) images tend to have higher levels of noise because of the 

smaller number of counts (due to shorter acquisition times per bed position), but the quality of 

RG images are impacted less by motion. Both conventional (3D) and respiratory-gated (4D) 

images are included in this study. 

Since the goal of Radiomics is the clinical application of image features, it is important to 

carefully characterize image features and to understand how they might be influenced by 

various clinical situations with varying levels of noise.  The goal of this study is to evaluate the 

effects of noise on image features.  

5.2 Materials and Methods 

5.2.1 Phantom Study 

A standard ACR accreditation phantom with a Germanium (Ge)-68 cylindrical insert 

(Benchmark by RadQual LLC, Weare, NH, SN: BMCY06813067103), was placed on a motion 

table with 2.4 cm motion amplitude and a 4 second period to simulate lung tumor motion due to 

the respiratory cycle. The phantom was imaged with three protocols: 1) 3D PET/CT with motion, 

2) 4D PET/CT with RG motion, and 3) 3D PET/CT without motion (static).  

5.2.1.1 Noise Application 

To assess the implications of electronic noise on image features, uncorrelated Gaussian 

noise with varying standard deviations was added to PET and CT patient and phantom images. 

A custom program was used to apply noise with varying standard deviation to phantom images 

using the following Gaussian function (pg, Equation 5.1).  



www.manaraa.com

 
64 

 

 [ 𝑝𝑔(𝑧) =
1

𝜎√2𝜋
𝑒

−
(𝑧−𝜇)2

2𝜎2  ]  (5.1) 

where μ is mean noise added, σ is standard deviation, and z is gray level. CT noise images 

were created with standard deviations of 10, 20, 50, 80, and 120 Hounsfield Units (HU). These 

will be referred to as GN10, GN20, GN50, GN80, and GN120 henceforth. PET noise images 

were created with standard deviations of 2.5%, 4.0% and 6.0% of the maximum intensity (not 

SUV). These will be referred to as low noise, medium noise, and high noise.  PET images had 

varying standard deviations due to the variation in maximum intensities (not an issue in 

phantoms but very significant in patient images). Although the GN120 noise level may represent 

greater levels of electronic noise than expected in a scanner, we believe this was necessary to 

clearly distinguish noise-affected features. The low noise levels of GN10 and GN20 were 

included to demonstrate how small noise levels affect image feature analysis. The higher noise 

levels were included to show the gross effects of noise on feature analysis. As demonstrated by 

Latifi et al., low-dose 4D CT settings sometimes involve high levels of noise (119). 

The specific activity (SA) of the ACR phantom was calculated using the activity on the 

date of source production (108274.4 Bq/cm3 on 03/20/2013), the date of measurement 

(02/18/2014), and the volume of the source (58.1 cm3). The measured specific activity was 

calculated using Mirada DBx (Mirada RTx, Mirada Medical, Oxford, UK). Mean counts (105527 

Bq/cm3) and standard deviation (2927.7 Bq/cm3) were obtained from the cylindrical ROI (24.4 

cm3) inside the volume-of-interest (VOI). The reciprocal of the coefficient of variation, or SNR, 

which was 2.7% from the noise contribution in the phantom data, was calculated. 

5.2.1.2 Signal-to-Noise Ratio (SNR) and Noise Power Spectrum (NPS) 

To understand the noise inherent in the images and to quantify the noise added to the 

images, the signal-to-noise ratio and noise power spectrum of the scanner was calculated. The 

noise power spectrum (NPS), representative of the noise texture of an image (used primarily in 

CT modalities) was calculated using the Ge-68 phantom. The signal-to-noise ratio (SNR), 
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representative of the amplitude of noise in an image was also calculated on the phantom for 

both PET and CT modalities to verify and quantify the addition of noise to the images.  

The SNR of a GE Discovery STE PET/CT Scanner was measured with the Ge-68 

phantom with activities of 0.62 mCi and 0.79 mCi. The phantom was scanned with 70 cm field-

of-view (FOV), 120 kV, 210 mA, 28 subsets, 2 iterations, and FWHM of 7 mm for 3D PET/CT 

and  60 cm FOV, 120 kV, 200 mA, 28 subsets, 2 iterations, and FWHM of 7mm for 4D PET/CT. 

To calculate the CT SNR, medical imaging software (Mirada RTx, Mirada Medical, Oxford, UK) 

was used to draw five 4 cm spheres onto the phantom image (figure 5.1a). For PET SNR, two 4 

cm spheres were drawn on the phantom image. One sphere was inside the Ge-68 source and 

the other was in a non-radioactive region inside the phantom (figure 5.1b). The SNR was 

calculated using Equations 5.2-5.4: 

 𝑠𝑖𝑔𝑛𝑎𝑙 → [ 𝑠 = ∑ 𝐻𝑈𝑖
̅̅ ̅̅ ̅𝑛

𝑖=1  ]  (5.2) 

 𝑛𝑜𝑖𝑠𝑒 → [ �̅� = √∑ 𝜎𝑖
2 𝑛

𝑖=1  ]  (5.3) 

  𝑆𝑁𝑅 → [ 𝑆𝑁𝑅 =
𝑠

�̅�
 ]  (5.4) 

where s is the signal, 𝐻𝑈𝑖
̅̅ ̅̅ ̅ is the mean HU for region i; n is the number of regions and �̅� is the 

mean standard deviation across all VOIs; i  is the standard deviation for region i.   

A CT image of the Ge-68 phantom was used to calculate the NPS of the GE PET/CT 

Scanner at our institution. Ten axial slices; four regions per slice were selected in the uniform 

region of the phantom. A gain correction was applied by subtracting the mean value of the 

regions and the Fourier transform was applied to each region to create a two-dimensional noise 

power spectrum. Forthwith, a one-dimensional NPS was plotted from the two-dimensional noise 

power data (figure 5.2) by radial averaging.  
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Figure 5.1 Method of SNR Calculation for (a) CT and (b) PET using Ge-68 solid epoxy phantom. 

 
 
 
 
 

 
Figure 5.2 Method to measure CT noise power spectrum using Ge-68 solid epoxy phantom: 1) Gather 4D 
independent images. 2) Apply gain & offset correction and subtract mean. 4a) Take 2D Fourier Transform 
of each image. Take magnitude of results & square it. Calculate Average of 40 results. 5) Calculate 1D 
NPS by radial average of the 2D result. 
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5.2.2 Patient Study 

Twenty-six non-small cell lung cancer (NSCLC) patients with 3D and RG PET/CT 

images were retrospectively selected for this study with ages from 47 to 83 years, eleven males 

and fifteen females. This study was approved with waived informed consent by the University of 

South Florida Institutional Review Board #105996.  Standard of practice procedures at our 

institution were followed. Gaussian noise was applied to all 3D and one RG phase of PET and 

CT patient images according to the method described previously (equation 1). Resulting PET 

and CT datasets consisted of four separate image sets for each patient, an original image 

dataset and image datasets of low, medium, and high noise for 3D PET, 4D PET, 3D CT and 

4D CT. Figure 5.3 demonstrates the noise levels for PET and CT for one case (coronal view).  

 
Figure 5.3 One coronal slice of a PET/CT image with and without noise. (A) Original image. (B) CT image 
with Gaussian noise (σ =120 HU). (C) PET image without noise. (D) PET image with Gaussian noise (σ 
=0.06*maximum intensity). 
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5.2.2.1 Feature Extraction 

The original and noise-added image sets were imported, viewed, and contoured with 

Mirada Medical Software (RTx, Mirada Medical, Oxford, UK). Lung tumor contours were 

acquired separately for noise and original images. PET image tumors were contoured at 40% 

maximum intensity inside a defined volume of interest. On CT images, tumors were contoured 

with CT region segmentation. An in-house program extracted image features for the region 

represented inside each contour. Eighty-one image features were extracted: 11 shape features, 

22 intensity features, 26 Gray Level Co-occurrence Matrix (GLCM) features, 11 Run Length 

Matrix (RLM) features and 11 Gray Level Size Zone Matrix (GLSZM) features (29, 63, 64, 111) 

(see Table 2.1 for a complete list.)  The dimension of the co-occurrence matrices were 128x128, 

calculated based on the 3D images with a step size of 1 voxel in 13 directions. The gray levels 

were binned into 128 levels with equal intensity intervals for the run-length matrices. The run 

length was calculated with the 3D images in 13 directions.  These 13 directions are defined by 

Xu et. al (110, 112).  

5.2.2.2 Statistical Analysis on Patient Data 

Conventional and 4D PET and CT image feature differences were evaluated separately 

resulting in four datasets: 3D PET, 3D CT, 4D PET, and 4D CT. Features from original images 

were compared to image sets with varying Gaussian noise levels for each case. Percent 

difference (Equation 5.5) was used to compare image features extracted from noise images 

(low, medium, and high noise) and original images.  

 [ %𝐷𝑖𝑓𝑓𝑖𝑗
𝑛𝑜𝑖𝑠𝑒 = 100 × |

𝑁𝑉𝑖𝑗−𝑂𝑉𝑖𝑗

𝑂𝑉𝑖
| ] (5.5) 

where 
ijNV is the value of feature j at noise level i and 

jOV is the value of feature j from the 

original image. The percent differences were averaged for each level of noise across all 

patients. Features varying on average by more than 100% were considered “non-robust” (those 

features that are not reliable or reproducible across noise). Those varying less than 10% were 
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considered “robust”. Features were classified into one of 11 categories for CT: R1, R2, R3, R4, 

R5, NR1, NR2, NR3, NR4, NR5, and B; and 7 categories for PET: R1, R2, R3, NR1, NR2, NR3, 

and B. These are defined in Table 5.1. 

 
Table 5.1 CT and PET Feature Classifications. 

Feature Classifications 

R1 
%𝐷𝑖𝑓𝑓 < 10% for CT noise level GN120 and PET highest noise level; 

Robust1 

R2 
%𝐷𝑖𝑓𝑓 < 10%

 
for CT noise level GN80 and PET mid noise level; 

Robust2 

R3 
%𝐷𝑖𝑓𝑓 < 10% for CT noise level GN50 and PET lowest noise level; 

Robust3 

R4 %𝐷𝑖𝑓𝑓 < 10% for CT noise level GN20; Robust4
 

R5 %𝐷𝑖𝑓𝑓 < 10% for CT noise level GN10; Robust5
 

NR1 
%𝐷𝑖𝑓𝑓 > 100% for CT noise level GN10 and PET lowest noise level; 

Non-robust1 

NR2 
%𝐷𝑖𝑓𝑓 > 100% for CT noise level GN20 and PET mid noise level; Non-

robust2 

NR3 
%𝐷𝑖𝑓𝑓 > 100% for CT noise level GN50 and PET highest noise level; 

Non-robust3 

NR4 %𝐷𝑖𝑓𝑓 > 100% for CT noise level GN80; Non-robust4
 

NR5 %𝐷𝑖𝑓𝑓 > 100% for CT noise level GN120; Non-robust5
 

B 
10% < %𝐷𝑖𝑓𝑓 < 100%

 
for CT noise level GN10 and  PET lowest noise 

level 

 
In addition to percent difference, the concordance correlation coefficient (CCC) was 

calculated for each feature between different levels of noise and the original image to assess 

whether feature values were consistent for different noise values. The strength of agreement 

classification is demonstrated in Table 5.2 (113).The mean CCC for each feature subtype was 

calculated and the median and range for each feature across noise levels were plotted.  

 

Table 5.2 CCC Strength of Agreement Scale. 

Strength of Agreement CCC Score 

High >0.99 

Substantial 0.95-0.99 

Moderate 0.90-0.95 

Poor <0.90 
*This scale originated from McBride (113). 
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5.3 Results 

5.3.1 Phantom Study 

The SNR for PET and CT images behaved as expected by decreasing as noise level 

increased (Figure 5.4) indicating that uncorrelated Gaussian noise increased the image noise. 

The measured NPS (Figure 5.5) showed the noise texture associated with the scanner at our 

institution (using the phantom CT image). The NPS for the original CT image was spatial 

frequency dependent, indicating correlated noise texture (Figure 5.5a). Whereas, the noise 

power spectra of the CT images with high levels of added noise were spatial frequency 

independent indicating that the addition of Gaussian noise overwhelmed the correlated noise 

inherent to the image generation process (Figures 5.5d, 5.5e, 5.5f). The noise power spectra of 

the low noise level images, GN10 and GN20 (Figures 5.5b, 5.5c) were not completely spatial 

frequency independent demonstrating that the inherent scanner noise power was still 

represented in part at these levels.  

5.3.2 Patient Study 

The automatic contouring via intensity threshold in the lung was not significantly affected 

by the noise. The R1 (%𝐷𝑖𝑓𝑓 < 10% for highest added noise, Table 5.3) features with (%𝐷𝑖𝑓𝑓 <

2%) for 3D CT were minimum intensity (<2%), peak intensity (<2%), mean intensity (<1%), root-

mean-square (<2%, RMS), I30 (<1%, intensity ranging from lowest to 30% highest intensity 

volume), 1st order entropy (<1%) and inverse difference moment (<2%). The results were 

comparable for 4D CT (see Table 5.3). In addition to the 3D CT R1 features, the 4D CT R1 

features included short axis, eccentricity, max intensity, V10-V90 (percentage volume with at 

least 10% intensity minus percentage volume with at least 90% intensity), and histogram 

entropy. However, the 4D R1 features did not include 1st order contrast and local homogeneity. 

Minimum intensity, peak intensity, mean intensity, RMS, I30, 1st order entropy, and inverse 

difference moment exhibited differences less than 1% for 4D CT. No features from the GLSZM 

were categorized as R1 features from 3D or 4D CT. 
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Non-robust features were defined as features that exhibited %𝐷𝑖𝑓𝑓 > 100% for the 

lowest level of added noise (NR1, Table 5.4). The 3D CT NR1 features included V70 (113%, 

percentage volume with at least 70% intensity) and V80 (278%, percentage volume with at least 

80% intensity) from intensity features, as well as large-area emphasis (LAE, 105%), low-

intensity emphasis (LIE, 375%), low-intensity large-area emphasis (LILAE, 410%), high-intensity 

large-area emphasis (HILAE, 184%), and intensity variability (IV, 135%) from the GLSZM. The 

CT NR1 features for 4D CT included V40 (138%, percentage volume with at least 40% intensity) 

and variance (182%) from the intensity features and SAE (121%, small-area emphasis), LIE 

(115%), LISAE (159%, low-intensity small-area emphasis), HISAE (245%, high-intensity small-

area emphasis), LILAE (136%), and HILAE (930%) from the GLSZM.  

For PET (3D and RG), shape features that depended solely on automatically drawn 

contours were the most stable. R1 features exhibiting %𝐷𝑖𝑓𝑓 < 2%included: surface/volume, 

sphericity, spherical disproportion, mean intensity, RMS, I30, 1st order entropy, 1st order local 

homogeneity, histogram entropy, entropy (<2%), inverse difference moment (<1%), inverse 

difference (<1%), sum average, sum entropy (<2%), information measure of correlation 2 

(<2%), SRE (<0.5%). There was one GLSZM R1 feature: zone percentage (ZP). In 4D PET, the 

R1 shape and intensity features were the same as 3D PET, excluding contrast (1st order). 

GLCM R1 features were the same as R1 features. Entropy, inverse difference moment (<1%), 

inverse difference (<1%), sum entropy, and information measure of correlation 2 

exhibited %𝐷𝑖𝑓𝑓 < 2%. RLM R1 features included SRE (<0.5%), LRE, high gray-level run 

emphasis (HGRE), short run high gray-level emphasis (SRHGE), long run high gray-level 

emphasis (LRHGE), gray-level non-uniformity (GLNU), RLNU, and RPC. The GLSZM R1 

feature was ZP (the same as in 3D PET).  

The non-robust features from the lowest level of noise (NR1) from 3D PET included 

LGRE (167%), short run low gray-level emphasis (SRLGE, 168%), and long run low gray-level 

emphasis (LRLGE, 164%) from the RLM and LIE (275%), LISAE (253%), LILAE (1437%) from 
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the GLSZM. There were fewer NR1 features from 4D PET. These features were from the 

GLSZM and included LIE (541%), LISAE (701%), and LILAE (610%). 

 

 
Figure 5.4 Signal to noise ratios for: (A) 3D and 4D CT (one phase) of phantom with motion table and 
static (3D only).  (B) 3D and 4D PET phantom with motion table and static (3D only).   

 
Figure 5.6 shows the trend between average percent differences for feature subgroups. 

For PET, shape, intensity, and GLCM features demonstrate an increase in difference with 

added noise. In CT this trend applied only to GLCM and GLSZM features, only with 3D CT. 

However, in both PET and CT, shape features exhibit the least change with uncorrelated noise 

(<4% average difference in PET and <11% average difference CT) and GLSZM features were 

the most sensitive to uncorrelated noise.  

The CCC values further demonstrated that feature subtypes responded differently to 

added noise. GLSZM features demonstrated average CCCs below 0.90 for all modalities and all 

levels of noise (<0.70 for PET and <0.62 for CT). This demonstrated a poor agreement between 

the image features from noise and original images for GLSZM and supports our percent 

difference results. There was a discrepancy between PET and CT with the RLM CCC scores. In 

PET (3D and 4D), the RLM features demonstrated the highest CCC values across noise levels, 

followed by the shape descriptors, first order features, GLCM, and GLSZM (except for the 

medium level of noise where GLCM has a higher average CCC than first order features). 

Although the feature subtypes had an order, the distinction was not pronounced. Besides the 
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GLSZM features, all other average CCCs were greater than 0.95 and thus there was a 

substantial strength-to-agreement between these features derived from noise images and 

original images for feature subtypes excluding GLSZM.  

In CT, the average CCCs were highest for shape descriptors, followed by the first-order 

features, GLCM, RLM, and GLSZM. Unlike PET, there was a clear distinction between the CCC 

values for different feature subtypes. Figures 5.7 and 5.8 demonstrate the median CCCs for 

each feature across noise with the ranges (min to max) for 3D CT, 4D CT, 3D PET, and 4D 

PET. 

 
Figure 5.5 NPS of Ge-68 solid epoxy phantom for GE Discovery STE PET/CT scanner with increasing 
image noise. (A) Original NPS of CT image of phantom. (B NPS of CT image with added Gaussian noise 
(σ=10 HU). (C) NPS of CT image with added Gaussian noise (σ=20 HU). (D) NPS of CT image with 
added Gaussian noise (σ=50 HU). (E) NPS of CT image with added Gaussian noise (σ=80 HU). (F) NPS 
of CT image with added Gaussian noise (σ=120 HU). Note: Y-scale changes from (A) to (F). 
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Table 5.3 R1 Features (%𝑫𝒊𝒇𝒇 < 𝟏𝟎%) for CT and PET. 
Subtype  Feature  3D CT 4D CT 3D PET  4D PET 

SHAPE 

Volume     

Surface Area    

Surface Area/Volume    

Sphericity    

Compactness    

Spherical Disproportion    

Long Axis    

Short Axis     

Eccentricity     

Convexity    

INTENSITY 

Minimum Intensity    

Maximum Intensity    

Peak Intensity    

Mean Intensity    

Standard Deviation      

Skewness      

Coefficient of Variation      

TGV    

RMS    

I30    

I10-I90      

V10-V90     

1st Order Energy    

1st Order Entropy    

1st Order Contrast     

1st Order Local Homogeneity     

Histogram Entropy    

Uniformity      

GLCM 

Homogeneity      

2nd Order Entropy      

Dissimilarity      

Co-occurrence Mean    

Inverse Difference Moment    

Inverse Difference    

Sum Average      

Sum Entropy      

Difference Average      

Difference Variance      

Difference Entropy      

Info Correlation 1      

Info Correlation 2      

RLM 

SRE    

LRE      

HGRE       

SRHGE       

LRHGE       

GLNU       

RLNU      

RPC    

GLSZM ZP      

Abbreviations: GLCM = gray-level co-occurrence matrix; RLM = run length matrix; GLSZM = gray-level size zone matrix 

  



www.manaraa.com

 
75 

 

Table 5.4 NR1 Features (%𝑫𝒊𝒇𝒇 > 𝟏𝟎𝟎%) for PET and CT. 

Subtype Feature 3D CT 4D CT 3D PET  4D PET 

INTENSITY 

V40        

V70       

V80        

GLCM Co-occurrence Variance        

RLM 

LGRE        

SRLGE       

LRLGE        

GLSZM 

SAE        

LAE       

LIE    

LISAE     

HISAE        

LILAE    

HILAE       

IV        

Abbreviations: GLCM = gray-level co-occurrence matrix; RLM = run length matrix; GLSZM = gray-level size zone matrix 

 
 

 
Figure 5.6 Average percent differences between noise and original images across feature sub-types for 
low, medium, and high noise in (A) 3D CT, (B) 4D CT, (C) 3D PET, and (D) 4D PET. 
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Figure 5.7 Median CCCs for all CT features – (A) 3D CT and (B) 4D CT – for the levels of noise including 
GN10, GN20, GN50, GN80, and GN120 range.  

 
5.4 Discussion 

We applied uncorrelated noise to phantom and patient images to analyze its effect on 

image features. We found that uncorrelated noise effects in GLCM, RLM, and GLSZM features 

were generally greater than those seen in shape features. Given what these texture features 

seek to measure, this finding is not surprising.  Since GLCM, RLM, and GLSZM features 

measure the relationships between pixels and the addition of noise (correlated or uncorrelated) 

alters these relationships, these texture features would be affected more than shape features 
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which depend mainly on the contour defining the tumor volume (VOI). Specifically, the GLCM 

measures spatial relationships between pixel pairs and the RLM measures runs of the same 

gray level across an image. GLSZM, introduced by Thibault et al., is an advanced statistical 

matrix that measures homogeneity (41, 63). All matrices, except the GLSZM, were calculated 

along multiple directions. Shape features however, are based on the size, shape, and convexity 

of VOI’s contour, which were essentially not affected by the addition of uncorrelated noise.  

 
Figure 5.8 Median CCCs for all PET features – (A) 3D PET and (B) 4D PET – for the levels of noise 
including low, medium, and high levels of noise. 
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Adding uncorrelated noise to PET images with large areas of uptake in the tumor, brain 

or bladder resulted in less significant affect from added noise. The large areas of high uptake 

created a bigger dynamic window of intensities and thus the added noise appeared to be less 

significant. For this reason, in situations where there are large tumors with high uptake, the 

uncorrelated image noise may not be a significant problem in feature analysis.  

We discovered that the effects of Gaussian added noise in CT were usually smaller in 

4D images than 3D images. We believe that since the original image noise of 4D images was 

greater than 3D images, the difference between original image features and noise image 

features was not as prominent. This also affected the CT SNR. The visible trend for PET 

wherein feature differences increased as noise increased was less distinguishable in CT; 

especially in 4D CT (Figure 5.6).  The added noise appears to have altered the CT SNR to a 

greater degree than PET SNR (see Figures 5.4a and 5.4b). It is clear that at higher noise levels, 

beginning at the GN50 noise level, the CT SNR converges implying that the Gaussian noise 

destroys the differences in SNR due to acquisition. Figure 5.4 demonstrates that at the GN50 

noise level, the SNR for 4D CT had decreased by a factor of two. At the GN120 noise level, the 

SNR for CT decreased nearly 5 times compared to PET where the SNR decreased by a factor 

of one. 

It is interesting that the SNR for 3D PET is lower than that of 4D PET especially when 

compared with the CT SNR. This could be due to motion effects. 4D PET accounts for motion. 

Since PET images are acquired over a rather long period of time (4 minutes per bed position), 

when motion is introduced into an image and not accounted for (as in 3D images) an averaging 

effect is introduced into the image and the true tumor location, size and shape is warped. We 

believe this is why the static PET image and 4D motion images have similar SNRs and 3D 

motion exhibits the lowest SNR. The SNR results in CT were drastically different from PET. To 

start, 3D motion had the highest SNR followed by static and finally 4D motion. Since CT images 

are acquired much faster than PET images, on the order of milliseconds and are much less 
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sensitive to motion, it makes sense that the static and 3D motion images had the highest SNRs; 

they received a higher number of counts than 4D CT. It is also interesting that the PET SNR is 

considerably lower (40x for 3D motion) than the CT SNR even for the original images. 

In PET images, the 3D and 4D image feature differences were comparable. Although 

there were fewer features in the NR1 category for 4D PET, differences were not consistently 

larger for 3D or 4D PET across all feature subtypes.  In addition, the percent difference in PET 

features did not always increase with respect to added noise. For instance, in the RLM and 

GLSZM features, average differences reached the maximum (4D PET) or minimum (3D PET) 

percent difference at the medium noise level (Figure 5.6). This could be caused by the large 

pixel size in PET, the high level of noise in the image due to decreased counts, or simply a 

saturation of the uncorrelated noise in the image at the low or medium noise levels.  Figure 5.4 

demonstrates that the PET SNR did not decrease sharply for 3D Motion, 4D Motion, or 3D 

Static PET indicating high levels of initial image noise.  

The finding that shape descriptors were less affected by noise than GLCM, RLM, and 

GLSZM features is favorable for the field of radiation therapy. Increasingly common, the gross 

tumor volume (GTV) for radiation treatment planning is contoured using both PET and CT. The 

addition of PET as a diagnostic tool in radiation therapy has improved GTV definition and 

demonstrated a 21-100% change in tumor volumes (120). PET in radiation treatment planning 

improves the contouring accuracy of the GTV which promotes decreased toxicity to healthy 

tissue (105, 121). 

The large differences in intensity, GLCM, RLM, and GLSZM features demonstrate that 

uncorrelated image noise affects image feature analysis. GLSZM features are highly unstable, 

particularly in 3D CT, with average values nearing 100,000% in some cases but as low as 0.4% 

in others. The full extent of this effect requires further investigation but it is clear that image 

features, especially those from intensity, GLCM, RLM, and GLSZM are affected by uncorrelated 

noise. Investigators that are using large numbers of images from multiple scanners should be 
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aware of the effects of image noise on image feature analysis. This was recently illustrated 

nicely for correlated noise by the work of Nyflot et al. (48).  Although we did not compare results 

from multiple scanners, quantitative accuracy in PET/CT is still being established (48). Multi-

center PET/CT trials testing the stability and repeatability of PET data from different sites 

demonstrated that the quantitative PET measurement, standardized uptake values (SUV), were 

within the PET Response Criteria in Solid Tumors (RECIST) limitations, but were higher than in 

a previous study conducted in smaller single-center studies (48). Even inside a single institution, 

patients imaged on the same scanner demonstrated SUV differences approaching 50% on test 

and retest analysis (2). It is clear that studies involving multiple scanners should be aware of the 

effects of image noise on their features. 

The noise texture, defined by the measured NPS was uniform in shape for the highest 

levels of added noise demonstrating that we had indeed added uncorrelated noise to the 

images. This uncorrelated noise is commonly termed “white noise” and in this study is 

considered random noise of a Gaussian distribution. A distinct difference existed between noise 

phantom NPS and original phantom NPS due to the shift from the inherent correlated noise in 

the image to uncorrelated Gaussian noise.   

Uncorrelated noise is not the only criteria that affect PET/CT image features. Nyflot et al. 

tested the effect of correlated (stochastic) noise on image features, as well as patient size, 

lesion size and image reconstruction method. They determined how stochastic noise have 

various effects on different feature subtypes – what they term “classes of metrics” - concluding 

that additional standards are warranted for prospective PET image feature analysis studies 

towards predicting clinical outcome or treatment response (48). Other studies have shown that 

motion, bin width, and SUV discretization, acquisition modes and reconstruction parameters 

also affect image features and in some cases the extent of these effects are feature dependent 

(45, 47, 48, 122). A common conclusion of these studies was that standardization of image 

feature analysis in Radiomics is needed. We join in agreement with these studies that 
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standardization is crucial as we look towards the application of Radiomics in Radiotherapy and 

other fields. We are also advocating for standardization of image feature analysis, especially in 

PET/CT, to promote accuracy and patient safety (if features are applied prospectively) when 

measuring image features for clinical purposes and to encourage accurate image feature study 

comparisons between scanners, institutions, and manufacturers. 

There were limitations to this study. The major limitation of this study was that we did not 

have access to the pre-reconstruction PET/CT data due to proprietary reasons. This was a 

retrospective study; however, we wanted to determine the effect of noise on archived patient 

studies. These limitations affected the approach in which noise was added to the PET/CT 

images as typically done (48, 123). In typical imaging systems PET and CT image noise is 

integrated into the reconstruction method and not necessarily additive, except in the case of 

electronic noise. Nevertheless, our method still allowed us to measure the sensitivity and 

degradation of Radiomic features due to noise.  

5.5 Conclusions 

Uncorrelated noise was added to PET and CT images. Shape, intensity, GLCM, RLM, 

and GLSZM image features were extracted from VOIs and image features that were non-robust 

with respect to the additional noise were identified. Many intensity, GLCM, RLM, and GLSZM 

features varied significantly with noise. Percent change between original and noise image 

features increased as noise level increased for intensity and GLCM features in PET, and GLCM, 

RLM, and GLSZM features in CT. GLSZM features were the most sensitive to noise both for CT 

and PET.  A good understanding of features sensitivity to noise is essential for image features 

analysis and Radiomics studies involving a large number of images from multiple scanners as 

would be the case in multi-institutional clinical trials.  This study adds support to the proposal for 

standardization of clinical processes and analysis involved in Radiomics. 
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Chapter Six: Fiducials vs. 18F FDG PET/CT for Esophageal Cancer GTV Delineation for 

Radiotherapy Treatment Planning6 

6.1 Introduction 

The five year survival rate for esophageal cancer patients is 18% and there are 

approximately 17,000 estimated new esophageal cancer cases and nearly 16,000 estimated 

deaths for 2016 (124). This is perpetuated because most esophageal patients present with 

locally advanced or metastatic disease (54). To improve outcomes, neoadjuvant therapy is 

recommended for patients with locally advanced disease prior to surgery (125). At present, data 

on individual sensitivity to chemotherapy and radiation therapy is lacking, thus patients are 

advised to undergo standard of care chemoradiation based on their clinical, rather than 

molecular, factors. Clinicians rely on radiographic indicators to assess response but, in the 

absence of progression at restaging, patients proceed to esophageal resection; the quality of life 

implications and medical cost of this are profound if patients have a pathologic complete 

response and yet have undergone removal of their esophagus. Conversely, if patients are found 

at the time of surgery to have had no response, their outcomes are no better than if they went 

directly to surgery upfront (57).  In fact, in the case of the pathologic non-responder, there is 

also the consideration of the potential acute neoadjuvant toxicity incurred for no demonstrable 

benefit at a delay of at least 12 weeks from diagnosis until definitive surgery.  

3D 18F-Fluorodeoxyglucose (FDG) PET/CT is obtained routinely for the initial staging of 

esophageal cancer and has been shown in several sites to alter the GTV delineation (126-129). 

Specifically in the esophagus, 3D PET/CT has been shown to improve staging (130).  

Theoretically, PET/CT could eliminate the need for additional staging methods in patients with 

distant metastatic disease (125). This would expedite treatment and avoid potentially ineffective 

                                                      
6 Portions of this chapter have been submitted for publication. 
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treatment methods. Not only does 3D PET/CT identify the primary tumor location, it is an early 

assessment tool for treatment response, outcome prediction and therapy modification (131-

133).  FDG PET is able to detect most primary tumors and lymph nodes. Studies have 

demonstrated a sensitivity of 30-93% and a specificity of 79-100% for lymph node detection 

(134). 

Endoscopically-placed fiducial markers have facilitated determination of respiratory 

associated tumor motion in the treatment of esophageal cancer as well as strategies of 

abdominal compression to decrease such motion, which has enhanced a conformal approach, 

particularly when used in conjunction with image-guided radiation therapy (IGRT) (135).  It is 

common, when planning esophageal cancer radiotherapy treatment, that accounting for 

microscopic disease, nodal involvement, and tumor motion is associated with larger planning 

target volumes (PTV) and consequently, increased concern about the amount of normal tissue 

irradiated (136). Studies have shown that increased areas of irradiated tissues can result in 

harmful effects such as radiation pneumonitis, pericardial effusion, and pleural effusion (136). At 

our institution, all trimdodality esophageal cancer patients receive 3D PET/CT imaging prior to 

treatment. In a study on 81 esophageal patients, respiratory associated superior-inferior tumor 

movement of 1.25 cm for proximal and middle esophageal tumors and 1.75 cm for those in the 

distal esophagus were noted (136). 

The role of 3D PET/CT in esophageal tumors that move with respiration and have the 

potential for significant mucosal inflammation is unclear. The GI research group at Moffitt 

Cancer Center previously reported the stability data of esophageal fiducial markers 

endoscopically implanted under ultrasound guidance within 1 cm from the superior and inferior 

edges of the tumor (135).  However, the correlation between gross tumor volumes derived from 

3D PET/CT vs. endoscopically placed fiducial markers has not yet been reported. This work 

tested the correlation between metabolic tumor volumes (MTV) derived from 3D PET/CT and 

endoscopically placed fiducial markers using ultrasonography.  
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6.2 Materials and Methods 

6.2.1 Patient Population 

Sixty-two patients with esophageal cancer were selected for this retrospective, IRB-

approved analysis. Twenty-one patients were deemed unfit for the study for various reasons. 

Each patient underwent placement of a VISICOIL™ (RadioMed Corporation, an IBA Company, 

Bartlett, TN) 10 mm x 0.75 mm gold fiducial marker at the inferior and superior borders of the 

tumor and received 3D PET/CT prior to Radiotherapy (RTx). Patients receiving only one fiducial 

marker were not included in this study. Refer to Table 6.1 for patient statistics and 

characteristics. Twenty patients received fiducials pre-PET/CT and 21 patients received 

fiducials post-PET/CT. In cases where patients underwent fiducial placement post-PET/CT, 

planning CTs were used to delineate the location of the fiducial marker. 3D planning CTs were 

imported from the Pinnacle treatment planning system (TPS; Version 9.8 Philips Medical 

System™, Fitchburg, WI). 3D PET/CT and planning CT images were imported into an image 

analysis software system (Mirada RTx, Mirada Medical, Oxford, UK) for measurements.  

 
Table 6.1 Patient Characteristics. 

Characteristic n (%) 

Age (median, years) 66 
Gender   

Male  32 (78.0) 

Female 9 (19.5) 

Location of Tumor  

Upper/Middle 1 (2.4) 

Middle 3 (7.3) 

Middle/Lower 2 (4.9) 

Lower 30 (73.2) 

GEJ/Lower 4 (9.8) 

GEJ 1 (2.4) 

MTV (median, cm
3
) 22.4 

 

6.2.2 Measurement of MTV 

Patients were imaged with a GE Discovery STE PET/CT Scanner (GE Medical Systems) 

at our institution. A tumor threshold was created using a background uptake method. A 3 cm 
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spherical volume-of-interest (VOI) was dropped onto a homogenous uptake region in the liver. 

The mean and standard deviation of the standardized uptake value (SUV) was extracted to 

calculate a threshold for the tumor volume as shown in Equation 6.1. 

 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = [𝐿𝑖𝑣𝑒𝑟𝜇 + 2𝐿𝑖𝑣𝑒𝑟𝜎] (6.1) 

where 𝜇 is mean and 𝜎 is standard deviation. In cases where contours extended into the 

stomach or the heart, a Boolean tool was used to create a conformal MTV. These difficult 

contours were then physician-verified and/or edited. The fiducial was delineated on CT via an 

absolute threshold for HU greater than 350. The centroid was determined as the center of mass 

of the fiducial contour. 

 

 
Figure 6.1 Method of determining MTV threshold for each esophageal tumor. On the fused PET/CT 
image, a 3-cm spherical region is placed in center of liver to account for background uptake. 

 

6.2.3 Measurement of Fiducial Distance 

The MTV contour was specified using the above defined liver threshold method and the 

axial slices were used to measure the distance between each centroid and corresponding tumor 

border. This distance was defined as the number of slices between the centroid of the fiducial 

and the first axial PET slice that included the MTV contour. The number of axial slices was then 

multiplied by slice thickness (3.27 mm for PET/CT and 3.0 mm for planning CT) to provide the 
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distance in centimeters. The distance and absolute values of the distances were recorded. 

Negative values described distances where fiducials were located inferior to the MTV border for 

both the superior and inferior margins of the tumor. Descriptive statistics such as: mean, 

median, standard deviation, maximum, and minimum were calculated. Cases involving large 

distances were investigated. The Concordance Correlation Coefficient (CCC) was used to 

determine correlation between the MTV threshold and superior fiducial distance (SFD), MTV 

threshold and inferior fiducial distance (IFD), tumor site and IFD, tumor site and SFD, time 

between fiducial and PET/CT, patient age and IFD, patient age and SFD. Tumor site represents 

the location of the tumor in the esophagus (upper, mid or distal/GE junction). The strength-of-

agreement scale was as follows: CCC > 0.99: high; CCC 0.95-0.99: substantial; CCC 0.90-0.95: 

moderate; CCC <0.90: poor (113). 

6.3 Results  

The median MTV threshold was 2.51 SUV (1.6-3.6) for all patients. For patients 

receiving fiducials before undergoing PET/CT (PrePF), the median MTV threshold was 2.45 

SUV (1.6-3.6). For patients receiving fiducials after undergoing PET/CT (PostPF), the median 

MTV threshold was 2.6 SUV (1.8-3.4). There was not much difference in MTV thresholds 

between the two cohorts. A two-tailed t-test demonstrated a p-value of 0.58 between the two 

cohorts demonstrating they were not significantly different.  The median relative uptake for the 

liver contour was 24% (5%-79%). Refer to Table 6.1-6.3. The median distance between MTV 

and fiducials was -0.3 cm (-3.90 cm – 2.70 cm) and 1.3 cm (-2.1 cm – 6.87 cm) for inferior and 

superior tumor borders, respectively (Table 6.2-6.4). These values were comparable to those 

from the two groups. PrePF patients (Table 6.3) demonstrated a median distance between MTV 

and fiducials of -0.82 cm (-2.62 cm - 2.62 cm) and 1.64 cm (-0.33 cm – 6.87 cm) for inferior and 

superior borders, respectively. PostPF (Table 6.4) patients demonstrated a median distance 

between MTV and fiducials of -0.30 cm (-3.90 cm – 2.70 cm) inferiorly and 0.60 cm (-4.20 cm – 

3.90 cm) superiorly. A poor strength-of-agreement (CCC < 0.90) was calculated between MTV 
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threshold and superior fiducial distance (SFD), MTV threshold and inferior fiducial distance 

(IFD), tumor site and IFD, tumor site and SFD, time between fiducial and PET/CT, patient age 

and IFD, patient age and SFD. 

 
Figure 6.2 Method of identifying the fiducial and marking the centroid at the inferior border of the MTV. 

 

24 of 42 (58.5%) cases had inferior fiducials located superior to the MTV border. In 13 

cases (31.7%), inferior fiducials were below the MTV border. 4 cases (9.5%) demonstrated 

perfect agreement between the inferior fiducial and MTV border (all PrePF). The superior 

fiducial and MTV border did not have perfect agreement in any case. In 34 cases (82.9%) as 

shown in Figure 6.3b, the superior fiducial was located inferior to the MTV border. In 7 cases 

(17.1%) the superior fiducial was located superior to the MTV border. Of these cases, 3 of 34 

(8.8%) distances were less than 0.5 cm for the superior location and 7 of 24 (29.2%) distances 

were less than 0.5 cm for the inferior location (Figure 6.3). 
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Figure 6.3 Inferior discordance and superior discordance histograms. Note: For inferior discordance, 
negative values denote that fiducials were located inside MTV. For superior discordance, negative values 
denote that fiducials were located outside MTV. 

 

6.3.1 Large Discordances 

In 8 cases, the superior fiducial-MTV discordance was greater than 2.0 cm. Of these 

cases, time between fiducials and PET ranged from 2-27 days. There was only 1 occurrence 

where the superior fiducial was inferior to the MTV border (negative distance). In the case of the 

patient with 6.87 cm discord (see Figure 6.4), the patient was diagnosed with extensive 

esophagitis and several nodules at the gastroesophageal (GE) junction. This discord was 

attributed to esophagitis. Of the 1 occurrence where the superior fiducial was superior to the 

MTV border, it was the only patient with medically inoperable stage 1 cancer (2 patients had 

stage 2 cancer in the cohort). The patient was diagnosed with adenocarcinoma of the distal 

esophagus although the uptake was in the mid esophagus. This patient had Barrett’s 

esophagus from the mid esophagus to the GE junction which may have influenced the uptake in 

the mid esophageal region (Figure 6.5). There was no correlation between MTV-to-fiducial 

distances greater than 2 cm and the gastroenterologist that performed the fiducial implantation.  
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Figure 6.4 Case with largest discord (6.87 cm) between superior fiducial and superior MTV border. 

 
 
 

Figure 6.5 Example of discordance between fiducials and MTV at the inferior and superior location (-4.20 
cm discord between superior fiducial and superior MTV border.) The red contour represents MTV 

threshold. The green dot represents the superior fiducial. The red dot is the inferior fiducial. 
 
 

 
Table 6.2 Fiducial vs MTV Border 

Total 
Inferior Fiducial 
Distance (cm) 

Superior Fiducial 
Distance (cm) 

MTV Threshold 
(SUV) 

Relative 
MTV (%) 

MTV 
(cm

3
) 

Mean -0.27 1.28 2.51 28.97% 30.53 

Median -0.30 1.31 2.50 24.00% 23.55 

Min -3.90 -2.10 1.60 5.00% 1.80 

Max 2.70 6.87 3.60 79.00% 
107.1

0 

SD 1.50 1.52 0.42 18.19% 28.21 
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Table 6.3 FID Pre PET Fiducial vs MTV Border 

FID Pre PET 

Inferior 
Fiducial 
Distance 

(cm) 

Superior Fiducial 
Distance (cm) 

MTV Threshold 
(SUV) 

Relative 
MTV (%) 

MTV 
(cm

3
) 

Mean -0.64 1.68 2.44 23.50% 40.13 

Median -0.82 1.64 2.45 18.50% 34.70 

Min -2.62 -0.33 1.60 5.00% 3.00 

Max 2.62 6.87 3.60 74.00% 
107.1

0 

SD 1.31 1.43 0.42 16.09% 33.47 

 
Table 6.4 FID Post PET Fiducial vs MTV Border 

FID Post 
PET 

Inferior 
Fiducial 
Distance 

(cm) 

Superior Fiducial 
Distance (cm) 

MTV Threshold 
(SUV) 

Relative 
MTV (%) 

MTV 
(cm

3
) 

Mean -0.03 0.60 2.56 34.10% 21.91 

Median -0.30 0.60 2.60 31.00% 20.60 

Min -3.90 -4.20 1.80 11.00% 1.80 

Max 2.70 3.90 3.40 79.00% 74.80 

SD 1.68 1.77 0.44 18.54% 18.50 

 

6.4 Discussion 

Esophageal tumors can have significant respiration-induced tumor motion. A study by 

Jin et al. measured the peak-to-peak magnitudes of the motion (137). The greatest motion was 

found for the distal esophagus in the cranial-caudal direction with a median distance of 5.4 mm. 

Median displacements for the proximal and middle esophagus were 2.9 mm and 3.7 mm, 

respectively. Interestingly, motion in the cranial-caudal direction was shown to have  the 

strongest correlation with respiratory curves (138). In that particular study, motion in the cranial-

caudal direction reached 13.8 mm in the lower thoracic esophagus, 7.4 mm in the middle 

esophagus, and 4.3 mm in the upper esophagus.  Investigators are beginning to realize the 

benefit of fiducials for radiation treatment planning for cancers of the esophagus (139) and 

studies have demonstrated that implantation of esophageal fiducial markers are both safe and 

feasible for target volume delineation purposes on CT (139). However, to our knowledge, the 
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discordance between endoscopically-placed fiducial markers and PET MTV in esophageal 

cancer has not been investigated. 

A retrospective study of esophageal cancer patients treated with preoperative or 

definitive chemoradiation at our institution between 2000 and 2012 demonstrated 3-year overall 

survival rates of 44.8% for 3-D conformal radiation therapy (3DCRT) and 41.5% for intensity-

modulated radiation therapy (IMRT) (140). The rates for that study agree well with the national 

5-year relative survival rate of 17% between 2010-2012 (141-143).  In the current study, 

patients were treated with radiotherapy between 2009 and 2014.   

It is common practice at our institution for patients with esophageal tumors that move 

with respiration to undergo fiducial placement in addition to 18F-FDG PET/CT to facilitate 

conformal delivery of a simultaneous integrated boost to the gross tumor volume (144). Our 

data recently reported a 55% complete pathologic response rate, significantly higher than the 

29% reported with the current standard of care CROSS regimen (145), which may be secondary 

to integration of both fiducials and MTV.  Indeed, it is perhaps the combination of fiducials and 

MTV that may allow for precise dose painting – the treatment of tumor areas that are more 

metabolically active with higher doses of radiation. This incorporation has facilitated our 

confidence in dose painting the gross tumor volume to a total dose of 56 Gy in 28 fractions 

simultaneously with the clinical volume dosed to 50.4 Gy while ensuring the reproducibility of 

our daily image guided delivery. Focal dose escalation is of particular concern in the region of 

the gastroesophageal junction where stomach filling can cause additional motion (146). The 

fiducials delimit the visible endoscopic mucosal tumor burden which improves target volume 

delineation in precise conjunction with daily dose delivery.   MTV, on the other hand, identifies 

metabolically active tumor regions and submucosal microscopic spread of disease that may not 

be visible endoscopically or on a CT image.  

Although our hypothesis in this study was neither confirmed nor disproven, a robust 

correlation was found between the inferior fiducial location and the border of the MTV and the 
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absolute SUV values were reasonably close to commonly used values of 2.5. However, relative 

SUV values were lower than the typical values of 40% of SUVmax.  A study by Zhong et al. 

found that an SUV cutoff of 2.5 was best to estimate gross tumor length in squamous cell 

carcinoma of the esophagus using 18F-FDG PET (147).  This agrees with our median MTV 

threshold of 2.51 SUV. 

Some cases demonstrated large areas of uptake that extended well beyond the 

implanted fiducial (-4.2 - 6.9 cm). In a few instances, tumors had small MTV with large distances 

between the MTV border and fiducial location.  These could represent tumors that were not 

FDG avid. The results demonstrated that in 81% of cases, the superior fiducial was located 

below the MTV threshold. Thus, in these cases, the MTV extended above the superior fiducial 

placement.  This discordance could be due to inflammation or esophagitis or potentially to 

disease that was not endoscopically visible. In comparison, 57% of cases the MTV extended 

below the inferior fiducial. Of these cases, 3 of 34 (8.8%) were less than 0.5 cm at the superior 

tumor border and 7 of 24 (29.2%) were less than 0.5 cm at the inferior tumor border. The 

majority of these cases were diagnosed as distal or GE junction tumors.  Thus, accurate fiducial 

placement may not have been possible in these cases given the proximity of the stomach. 

There was a clear indication that in most cases the MTV extended beyond the superior fiducial 

and that timing of the PET before or after fiducial placement was not a significant factor. 

It is unclear, however, the etiology of the discordance superiorly, with the PET/CT 

showing high uptake at and above the endoscopically placed marker, potentially representing 

benign secondary esophagitis such as in the setting of luminal obstruction, the presence of 

malignant nodes, inflammation caused by the technical aspects of the fiducial placement itself, 

or potential submucosal disease. In the case of the largest discordance, the patient had been 

diagnosed prior to treatment with extensive esophagitis. According to these findings, the 

incorporation of a fiducial marker inferiorly into the routine management of locally advanced 
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esophageal cancer may offer accurate target volume delineation when compared with 3D 

PET/CT alone.  

One limitation of this study is that about half of the patients underwent PET/CT imaging 

prior to fiducial implantation. Thus, the PET/CT and planning CT had to be fused, and the 

fiducials and distances between fiducials and the MTV borders had to be identified and 

measured.  Image fusion may have led to some uncertainty (148). 

6.5 Conclusion  

The inferior fiducial location and MTV border for esophageal cancer had a robust 

correlation. Thus, it may be prudent to incorporate an inferior fiducial in the routine management 

of locally advanced esophageal cancer. The etiology of the discordance between the superior 

fiducial location and MTV border could be caused by inflammation from the fiducial placement 

itself, submucosal disease, or benign secondary esophagitis. Regardless of the discordance, 

having both fiducials is important for image guidance, especially in cases of focal dose 

escalation in tumors involving the GE junction. The factors confounding FDG uptake superiorly 

need further investigation to optimize MTV delineation. 
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Chapter Seven: Conclusions and Future Work 

7.1 Research Outcomes 

This research explored PET/CT diagnostics and treatment capabilities in lung and 

esophageal cancer. The main research outcomes of this work were that: 

 Image Features are affected by motion, especially in tumors that move greatly 

(ranging ~1-2 cm) - such as those that move with the respiratory cycle (lung 

tumors located near the diaphragm). 

 Certain features are less affected by motion and noise. GLSZM are highly 

sensitive and varied greatly with the addition of uncorrelated Gaussian noise. 

This is not acceptable as an additional decision factor  for clinical image analysis 

for PET/CT systems with high levels of noise but it could be an advantage in low 

noise situations. GLSZM features may vary significantly (more than 100 % for CT 

data) with change of image texture pattern. Shape features were the least 

affected by the addition of uncorrelated Gaussian noise. GLCM and RLM 

features were highly sensitive to image noise (change in noise level caused 

changes >100%), although not as much as for the GLSZM features.  

 There was discordance between endoscopically placed fiducial markers and 

MTV. This demonstrates a need for both techniques synergistically in the clinic to 

provide a more complete  view of the tumor location. 

Investigators must be aware of these effects of noise and motion on image feature 

analysis and account for them to avoid false positives. Chalkidou et al. found that published 

studies using image feature analysis to predict clinical outcomes had an average probability of 

type-I error (false positive) of 76% (82). These false positives could be caused by tumor motion 

and image noise as well as other factors that affect image features such as SUV bin 
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discretization (where SUV bins are divided into equally spaced bins) and reconstruction 

parameters (47, 48, 81-83). Other studies have demonstrated that particular features are 

correlated with tumor volume (82). Thus, the predictive abilities of these image features are 

characteristics of the tumor volume and not the features themselves (71). It cannot be 

emphasized enough that investigators involved in image feature analysis, especially in a clinical 

setting, must be aware of how factors such as noise and motion affect their image features. This 

work highly recommends that image feature analysis for PET and CT imaging modalities be 

standardized and a protocol developed for reproducibility and accuracy across institutions. 

7.2 Future Work 

Currently, investigators are pursuing active research correlating treatment outcomes to 

image features (54, 80). One goal of image feature analysis in Radiotherapy is to identify 

predictive and prognostic features and to use such features to identify optimal treatment 

regimen for patients (personalized medicine). This technique will allow the Radiation Oncologist 

to select the optimal treatment regimen for a patient prior to treatment thus providing the best 

chance of survival and quality of life (tumor control and reduced toxicity). Esophageal cancers 

will especially benefit from this technique because they are time-sensitive. An ineffective 

treatment could lead to an early death. A patient’s chance of survival decreases each day an 

ineffective treatment regimen is used.  

The next step of our research would be to extend the noise study from Chapter 4 and 

assess the sensitivity of correlated noise effects on image features. This would require access 

to raw PET/CT data which was unavailable during this study due to proprietary reasons. Noise 

would be added directly to the sinograms in the case of PET and then reconstructed with the 

noise inherent in the image, thus providing a more accurate noise image because it more 

accurately represents the stochastic effect of the random variations in photon counting for CT 

and radioactive decay in PET (21, 48). The ASIM PET simulator, open-access software 

developed by the University of Washington (https://depts.washington.edu/asimuw/index.html) to 
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simulate emission data, attenuation correction, and noise propagation would be used to apply 

correlated noise to the raw PET data (sinograms) at our institution (H. Lee Moffitt Cancer 

Center). 

Another interesting and potentially promising idea would look at ways to account for 

motion and noise effects in image feature analysis. Vaidya et al accounted for motion in their 

study of 2 NSCLC patients by applying a deconvolution algorithm – an inverse filter 

compensating for blurring through a motion kernel (38). Aerts et al accounted for noise by using 

data that was in its raw form, without pre-processing or normalization (84). Although a 2D study, 

Ganeshan et al. removed the effects of noise in CT using image filtration, using features larger 

than 4 voxels (72). 

Our current research serves as a warning to investigators that image features are not 

independent. They are affected by many factors that require acquisition protocol standardization 

across institutions. 

Another future step would be standardization of Radiomic features. This would be a 

collaborative effort between many institutions and research groups. Buvat stated that feature 

descriptor names, definitions, and equations vary between studies (71) which warrants the 

standardization of features a necessary step toward clinical applications. 
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